Новые нейроны, новая память? — КиберПедия 

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Новые нейроны, новая память?

2018-01-05 194
Новые нейроны, новая память? 0.00 из 5.00 0 оценок
Заказать работу

 

Говорят, что мы ежедневно теряем бессчетное количество нейронов, то есть нервных клеток, из которых состоит наш мозг, и что в то же время мы не воспроизводим новые. Это предположение не может нас не беспокоить, но так ли это на самом деле?

В ходе развития человеческого эмбриона происходит дифференциация и увеличение числа нейронов до тех пор, пока их количество не достигнет сотен миллиардов клеток, формирующих наш мозг. До недавнего времени действительно существовала гипотеза, согласно которой воспроизводство нейронов прекращается незадолго до рождения ребенка. Эту идею впервые выдвинул Сантьяго Рамон-и-Кахаль, великий ученый, один из отцов-основателей нейробиологии, получивший в 1906 году Нобелевскую премию. Он описал организацию нервной системы человека на микроскопическом уровне и проиллюстрировал свою теорию собственноручно сделанными уникальными рисунками. Он полагал, что раз уж развитие мозга заканчивается еще до рождения ребенка – значит, в мозге взрослого человека все остается неизменным. И в подтверждение этой своей идеи Рамон-и-Кахаль писал:

«Источники роста иссякли, все умирает, и ничто не возрождается. И главной задачей науки будущего является поиск решения, как обойти эту фатальную неизбежность».

На чем же базируется утверждение, что мозг человека – это некое застывшее образование?

Существует множество аргументов в пользу этой идеи. С одной стороны, мы видим, что любые повреждения мозга очень медленно восстанавливаются. После заживления царапины на коже не остается никаких следов, возможна регенерация печени, но наш мозг, к сожалению, такими свойствами не обладает. С другой стороны, если рассматривать мозг как идеальный и очень сложный часовой механизм, то даже малейшая ржавчина (либо ее изъятие) может нарушить превосходно отлаженный и доведенный до совершенства ход этого механизма. А в заключение остается добавить, что с технической точки зрения у нас только недавно появилась возможность изучать процесс возобновления нейронов в мозге живого человека. Во времена Рамона-и-Кахаля таких технологий просто не было.

Вы спросите: хочу ли я сказать, что совершен некий прорыв и учеными доказано, что нейроны в мозге взрослого человека могут возобновляться?

Действительно, было замечено, что в мозгу взрослых животных (включая человека) нейроны обновляются на протяжении всей жизни, по крайней мере, в двух раздельных зонах: в обонятельной луковице (рисунок 4), которая участвует в восприятии запахов, и в гиппокампе, важность которого в обучении и запоминании нам уже известна. В шестидесятых годах прошлого века было обнаружено, что в гиппокампе взрослого человека клетки постоянно воспроизводятся, а десятью годами позднее ученые установили, что речь идет именно о нейронах, то есть о нервных, а не о глиальных клетках, которые обеспечивают метаболические процессы в нервной ткани и также осуществляют защитную функцию.

 

Рис. 4. Обонятельные луковицы, расположенные в области нижних поверхностей лобных долей над носовыми полостями, являются, наряду с гиппокампами, зонами головного мозга, в которых обновление нейронов продолжается и по достижении человеком взрослого возраста

 

Выполняют ли эти «новые нейроны», которые формируются в мозгу взрослого человека, какие-либо дополнительные функции?

Исследуя мозг певчих птиц, ученые установили, какие функции возлагаются на эти «новые нейроны». Для примера возьмем канарейку. Каждый год самцы этой певчей птички обновляют свой репертуар, и «разучивание» ими новых «песен» обеспечивается, в частности, за счет формирования новых нейронов, которые развиваются и подключаются к структурам мозга канарейки, отвечающим за пение. Распространив данные исследования на грызунов, ученые пришли к выводу, что обновление нейронов играет большую роль и в их среде. Как только исследователи заставляли крысу выполнить задачу, в решение которой вовлекался гиппокамп (например, найти дорогу в лабиринте), так сразу начинался количественный рост нейронов. Короче говоря, пролиферация нейронов играет большую роль в консолидации воспоминаний.

Только что мы говорили о мелких представителях животного царства – о канарейках и крысах. Их нейроны обновляются и по достижении ими взрослого возраста. И эти новые нервные клетки задействованы в процессе формирования воспоминаний и в обучении. Возникает логичный вопрос: «Относится ли все вышесказанное также и к человеку?»

Следует отметить, что проводить исследования на человеческом мозге гораздо сложнее, потому что мы не можем применять к людям те же методы, что и к мелким животным. И только совсем недавно, в 1998 году, ученым удалось продемонстрировать, что нейроны воспроизводятся и в гиппокампе человека. С целью диагностики пациентам, страдающим раком ОРЛ (уха, горла или носа), вводили контрастное вещество со специфическим воздействием – оно поглощалось исключительно клетками в стадии деления. После смерти пациентов у них изымали гиппокампы, которые исследовали под микроскопом. Выяснилось, что некоторые нейроны гиппокампа также интегрировали красящее вещество. Следовательно, это были клетки, находящиеся в стадии деления в тот момент, когда пациентам вводили контрастное вещество.

Таким образом, мы теперь знаем, что новые нейроны появляются и в мозге взрослого человека. Но как доказать, что эти новые нейроны участвуют в процессе запоминания?

Это очень сложный вопрос. В широко известном научном журнале «Brain» недавно была напечатана статья, автор которой предложил весьма смелый подход к решению этой проблемы. Среди пациентов, страдающих эпилепсией, выделили тех, у кого пусковой момент припадка находился в гиппокампе. И в тех случаях, когда медикаментозное лечение не оказывало действия, пациентов подвергали операциям и изымали гиппокамп, вызывавший эпилептические припадки. После изъятия гиппокампов ничто не мешало ученым использовать их в научных целях. Что и было сделано. Были выделены нейроны из двадцати трех гиппокампов. Затем эти нейроны поместили в лабораторных условиях в питательную среду, где в них поддерживалась жизнь. Таким образом ученые смогли оценить их способность к воспроизводству и пролиферации. У части пациентов нейроны имели большую способность к пролиферации, в то время как у остальных нервные клетки почти не воспроизводились.

Возникает вопрос: а имеет ли способность гиппокампов к воспроизводству какое-либо отношение к функционированию памяти?

Пациенты-эпилептики, у которых был удален гиппокамп, прошли в рамках подготовки к операции специальные тесты на запоминание. Главный вывод, к которому в результате исследования пришли ученые, заключается в следующем: пациенты, нервные клетки которых демонстрировали высокую степень пролиферации, имели нормальную память, а те из них, чьи нейроны почти не обновлялись, с трудом запоминали новое.

Каков же вывод?

Возникает большое искушение сказать следующее: существует четко выявленная причинно-следственная связь, а именно: чем выше способность нейронов к воспроизводству, тем лучше функционирует память у пациентов. И если это подтвердится, значит, учеными совершено открытие мирового уровня. Хотя одно можно утверждать уже и сейчас: пролиферация нейронов в мозгу человека является одним из основных механизмов памяти.

 

Воспоминания как на ладони

 

Часто в научно-фантастических романах и фильмах возникает сюжет, когда человеческий мозг подключают к некой машине, которая скачивает, обрабатывает, демонстрирует и, возможно, даже заменяет наши воспоминания и нашу память. Имеют ли эти фантазии, навевающие смутную тоску, хотя бы что-то общее с реальным положением вещей в современной неврологии?

Да, наши воспоминания «читаются», но в очень небольшой степени и не всегда правильно. В этом смысле мы еще очень далеки от создания широкоформатного экрана, на котором могли бы их демонстрировать. Но я вам сейчас продемонстрирую пример того, каких успехов добились ученые в последнее время. В книге «Почему шимпанзе не умеют говорить» я упомянул об одном исследовании, касающемся чтения мыслей. В ходе этого эксперимента пациентов, помещенных в магнитно-резонансный томограф, просили думать либо о лицах людей, либо о домах. При этом учеными отмечалась активизация области «А» в тот момент, когда они думали о лицах, или области «В», когда они представляли себе дома. Но это довольно простой случай, поскольку в визуальной системе мозга имеются отдельные зоны, специализирующиеся на распознавании лиц и домов. Зато, по всей видимости, нет таких зон, отвечающих, например, за раздельное восприятие лимонного пирога или пирога с яблоками.

То есть это означает, что, основываясь на активизации отдельных зон мозга, у нас нет никакой надежды понять, о каком из пирогов – лимонном или яблочном – думает данный любитель вкусно поесть?

Но у нас есть нечто большее, чем просто надежда. Допустим, что одна и те же область мозга реагирует на все существующие пироги. Но что будет различаться в активизации мозга при мысли о яблочном или лимонном пироге, так это глобальная скорость протекания активизации, наличие провалов и пиков в этой области. Для продолжения эксперимента представьте себе, что яблочные пироги активизируют в большей степени верхнюю левую зону этой области, а лимонные – нижнюю правую зону. Итак, общая картина протекания процесса активизации поможет определить, о каком из пирогов думает человек.

А проводились ли более сложные и серьезные эксперименты, чем этот немного наивный опыт с пирогами?

Команда английских исследователей недавно опубликовала две статьи, в которых они анализировали область мозга, о которой мы так часто упоминаем в этой книге. Я имею в виду гиппокамп.

Гиппокамп обладает двумя главными функциями. Первая, изученная в основном на крысах, заключается в том, что в него встроено некое «устройство», нечто вроде GPS, которое формирует в мозгу животного своего рода карту окружающей территории, и таким образом, благодаря ее наличию, в тот момент, когда животное находится возле двери вольера или возле кормушки, в его голове активизируются те или иные нейроны. Вторая функция гиппокампа – это формирование воспоминаний о том, что с нами происходит (напоминаем, что эта зона первой выходит из строя во время болезни Альцгеймера).

Начнем с GPS-функции гиппокампа.

Исследователи познакомили участников эксперимента с виртуальной квартирой. Сидя перед экраном компьютера, они могли при помощи джойстика свободно в ней перемещаться. И все это, разумеется, происходило в магнитно-резонансном томографе. Испытуемому давали следующие инструкции: «Подойди к окну в столовой, теперь пройди к двери ванной комнаты…» Когда испытуемый оказывался в нужном месте, томограф делал снимки его мозга. Самое главное в эксперименте по чтению мыслей начиналось после того, как все МРТ-снимки были закружены в компьютер, который «научили» распознавать, какая из зон («я иду в столовую» или «я иду в ванную комнату») возбуждается в большей степени в общей картине активизации гиппокампов.

«Значит, – спросите вы, – компьютер способен различать две картины активизации и понимать, где в данный момент находился испытуемый в момент фиксирования снимков мозга?»

Да, однако мы только начинаем приближаться к угадыванию того, в каком пункте – «А» или «В» либо где-то еще – находился испытуемый в момент снимка мозга. Пока, к сожалению, случаются и ошибки, но количество верных попаданий нельзя свести к случайности.

Читатель мне скажет, что гиппокамп играет ведущую роль в формировании воспоминаний. А можно ли, используя ту же методику, «прочесть» по картине активизации гиппокампа, о чем вспоминает человек?

Предлагаю вашему вниманию описание следующего эксперимента. Его участникам показали три маленьких фильма длительностью от пяти до десяти секунд, которые для лучшего запоминания демонстрировали несколько раз. Затем испытуемые были помещены в магнитно-резонансный томограф, и им была дана команда вспоминать как можно подробнее и по многу десятков раз все три фильма в том порядке, в каком им заблагорассудится. При этом были сделаны снимки мозга, произведенные во время фазы воскрешения фильмов в памяти испытуемых. Главной целью эксперимента было, разумеется, правильное определение по снимку мозга, о каком из трех фильмов думал в этот момент участник эксперимента.

Удалось ли ученым «научить» компьютер распознавать по картине активизации гиппокампа, о каком из фильмов – первом, втором или третьем – идет речь?

Пока ученые находятся на пути решения этой проблемы. Но следующий факт также представляет большой интерес: попутно во время проведения эксперимента было выяснено, где расположены зоны мозга, несущие ключевую информацию. Так, оказалось, что в передней зоне гиппокампа формируются воспоминания о фильмах, поэтому по степени ее активизации можно выяснить, о каком из них думает испытуемый, в то время как роль GPS-навигатора играет задняя часть гиппокампа, и она же указывает, в какой из виртуальных комнат находится участник эксперимента.

Получается, что мы вплотную приблизились к тому моменту, когда сможем увидеть на широкоформатном экране воспоминания, которые посещают наши головы?

Увы, это произойдет еще не скоро. Нужно отдавать себе отчет в истинном положении дел. В примере с тремя фильмами мы не видим самих воспоминаний, мы только угадываем, о каком из них думает испытуемый. И наши достижения в этой области еще не столь велики, а эксперименты далеки от завершения. Если бы компьютер осуществлял случайную выборку ответов, он был бы прав только в трети представленных случаев. А опираясь на описанную выше методику, мы угадываем верный ответ примерно в сорока пяти процентах случаев. Это лучше, чем ничего, но почивать на лаврах еще рано. Однако отбросьте ваши сомнения. Прогресс в науке остановить невозможно!

 


Поделиться с друзьями:

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.02 с.