Принцип работы пироэлемента. — КиберПедия 

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Принцип работы пироэлемента.

2018-01-03 188
Принцип работы пироэлемента. 0.00 из 5.00 0 оценок
Заказать работу

Объектив радиационных пирометров фокусирует наблюдаемое излучение на приемник (обычно термостолбик или болометр), сигнал которого регистрируется прибором, прокалиброванным по излучению абсолютно черного тела и показывающим радиационную температуру Tr. Истинная температура определяется по формуле.

Зеркальный метод ультразвукового контроля

Билет №17

  1. Физические основы и методы ультразвуковой дефектоскопии.

Ультразвуковой контроль (УЗК) относится к акустическому виду неразрушающего контроля, основанному на анализе результатов взаимодействия звуковых волн с объектом контроля (ОК) => УЗК относится к методам активного контроля (подразумевает воздействие на ОК и последующий анализ изменения первичного воздействия для характеристики дефектов).

Все многообразие акустических методов неразрушающего контроля основано на взаимодействии упругих сред (жидких, твердых и газообразных) с акустическими колебаниями и волнами. Они отличаются способами возбуждения колебаний и их регистрацией.

Из числа акустических методов чаще всего применяют ультразвуковую дефектоскопию (УЗД), ультразвуковую толщинометрию (УЗТ) и акустико-эмиссионный неразрушающий контроль. На УЗД в мировой практике приходится в настоящее время 60 % всего объема неразрушающего контроля.

Акустические колебания и волны

Акустические колебания представляют собой механические колебания частиц упругой среды. Процессы распространения этих колебаний в среде называют акустическими волнами. Линию, указывающую направление распространения волны, называют лучом, а границу раздела колеблющихся частиц от неколеблющихся - фронтом волны.

Акустические колебания характеризуются частотой, интенсивностью и видом. Виды колебаний в основном определяются свойствами упругой среды и способом их создания. В жидкостях и газах, обладающих упругостью объема, акустические колебания распространяются с одинаковой скоростью во всех направлениях. В твердых телах, характеризуемых помимо упругости объема еще и упругостью формы (сдвиговой упругостью) и неодинаковостью деформаций растяжение-сжатие по различным направлениям (для анизотропных тел), закономерности распространения акустических волн значительно сложнее.

Колебания с частотой до 16...20 Гц называют инфразвуковыми. Колебания с частотой от 16...20 до (15...20)103 Гц составляют диапазон слышимости, воспринимаемый человеческим ухом. При увеличении частоты колебаний звука более 20 кГц он переходит в ультразвук; при этом способность его распространения меняется: в воздухе способность распространения уменьшается, в твердых и жидких средах - увеличивается. При неразрушающем контроле металлических материалов используются частоты ультразвукового диапазона 0,5...25 МГц (500…25000 кГц).

Распространение акустической ультразвуковой волны в материале происходит с определенной постоянной скоростью С, определяемой свойствами среды. Распространение волны сопровождается образованием в материале зон, в которых частицы находятся в одинаковом колебательном состоянии (фазе). Минимальное расстояние между такими зонами называют длиной волны . Величина связана со скоростью распространения С и частотой колебаний f выражением

.

Изменить длину ультразвуковой волны в конкретном материале можно только путем изменения частоты f возбуждаемых колебаний.

Направление колебаний частицы в твердых телах может быть различным по отношению к направлению распространения волны. По характеру смещения частиц и распространению колебаний волны бывают нескольких типов.

Характер деформации твердых тел при распространении в них упругих волн некоторых типов (величины деформации тела очень малы и измеряются долями процента от длины волны):

 

а - продольные (растяжение-сжатие);

б - поперечные (сдвиговые).

 

Продольными называют волны, когда частицы упругой среды колеблются в направлении распространения волны, подвергаясь при этом поочередно деформациям растяжения-сжатия.

Скорость продольной волны определяют по формуле

, где Е - модуль упругости; - коэффициент Пуассона; - плотность среды.

Если частицы среды колеблются перпендикулярно направлению распространения, испытывая деформации сдвига, такие волны называют поперечными или сдвиговыми. Поперечные волны могут возникать только в твердых средах, обладающих сдвиговой упругостью. Скорость поперечной волны

.

Среда распространения Тип (название) волны Характеристика волны Скорость распространения
Жидкость или газ Продольные (растяжения-сжатия) Периодические расширения и сжатия среды С
Безграничное твердое тело (сталь) Продольные (расширения-сжатия, безвихревые) Частицы колеблются в направлении распространения волны
Поперечные (сдвига, эквиволюминальные) Частицы колеблются в плоскости, перпендикулярной направлению распространения волны

При проведении УЗД и УЗТ металла и сварных соединений используют в основном поперечные и продольные волны.

Затухание ультразвука

Распространение ультразвуковой волны, вызванной колебательными движениями возбужденных частиц благодаря упругим силам между ними, сопровождается переносом энергии. Количество энергии, переносимое волной за 1 с через 1 см2 площади, перпендикулярной направлению распространения, называют интенсивностью ультразвука. Интенсивность ультразвуковых колебаний частиц обычно невелика (энергия волны не более 100 Вт/см2 и не выходит за пределы упругих деформаций, где напряжения и деформации связаны линейной зависимостью.

Интенсивность ультразвука по мере прохождения в среде уменьшается за счет ее волнового сопротивления z. Величина этого сопротивления, часто называемого характеристическим импедансом, зависит от плотности среды , скорости распространения волн С и определяется выражением

.

Интенсивность ультразвука J пропорциональна квадрату амплитуды упругого смещения и квадрату частоты колебаний

,

где A - амплитуда упругого смещения частиц среды; f - частота колебаний.

Из последнего выражения следует, что чем большим акустическим сопротивлением обладает среда, тем большая энергия требуется для возбуждения в ней волн заданной частоты и амплитуды. По мере прохождения волны от источника излучения амплитуда упругого смещения частиц уменьшается и интенсивность ультразвука падает. Затухание интенсивности происходит по двум основным причинам: поглощения и рассеяния. Коэффициент затухания соответственно состоит из двух слагаемых

,

где - коэффициент поглощения, определяемый вязкостью среды и частотой колебаний; - коэффициент рассеяния, зависящий от структуры, упорядоченности расположения и размера зерен кристаллов.

Поглощение - это процесс перехода энергии колебаний в тепловую, обусловленный трением колеблющихся частиц. Поглощение будет тем больше, чем больше частота колебаний.

При рассеянии происходят преломление и трансформация ультразвуковых волн. Рассеяние обусловлено кристаллической структурой металлов и сплавов. При прохождении ультразвуковой волны через границы кристаллов волна частично отражается, преломляется и трансформируется. Рассеяние по этим причинам может быть значительным. Максимальное рассеяние имеет место при , где - средний размер зерна.

Снижение интенсивности ультразвука вследствие его затухания в зависимости от пройденного в материале расстояния происходит по экспоненциальному закону

,

где - интенсивность ультразвука на расстоянии х от источника излучения, интенсивность излучения которого ; - коэффициент затухания.

Чем больше коэффициент затухания, тем значительнее ослабление ультразвука, а следовательно, меньше глубина его проникновения. Поскольку амплитуда волны пропорциональна корню квадратному из интенсивности ультразвука (), влияние затухания на амплитуду описывается формулой

.

Для оценки ослабления в большинстве случаев нет необходимости определять интенсивность J или амплитуду A в абсолютных единицах. Чаще бывает достаточно определить их величину относительно некоторого постоянного (опорного) уровня . В этом случае для выражения относительной величины используют специальные единицы - децибелы. Число децибел дБ определяют по формулам

.

В практике УЗД, когда контролируется соотношение амплитуд колебаний, для определения дБ обычно используют вторую формулу.

Различные методы ультразвукового контроля отличаются схемами установки излучателя и приемника ультразвуковых колебаний, их положением относительно объекта контроля. Применяют:

Эхо-метод Теневой метод (нет мертвой зоны) Эхо-теневой метод
Дельта метод Эхо-зеркальный метод  
и другие (зеркально-теневой).

Наиболее широкое распространение получил импульсный эхо-метод, основанный на отражении УЗ колебаний от несплошности и приеме отраженных эхо-сигналов. Амплитуда эхо-сигнала на экране дефектоскопа при этом будет пропорциональна размерам дефекта.

  1. Вихретоковый контроль.

Вихретоковый вид неразрушающего контроля основан на анализе взаимодействия внешнего электромагнитного поля с электромагнитным полем вихревых токов, наводимым в объекте контроля этими токами. Параметры наведенного поля определяются геометрическими и электромагнитными характеристиками контролируемого объекта. Результаты этого взаимодействия зависят от величины и характера как внешнего, так и наведенного полей. Для создания внешнего электромагнитного поля чаще всего используют индуктивные катушки, через которые пропускают переменный ток соответствующей частоты. Устройство, состоящее из одной или нескольких индуктивных катушек, предназначенное для возбуждения в объекте контроля вихревых токов и преобразования зависящего от параметров объекта электромагнитного поля в электрический сигнал, называется вихретоковым преобразователем.

Вихревые токи возникают в электропроводящих телах под воздействием изменения внешнего магнитного поля, которое может происходить как за счет изменения магнитного потока во времени, так и в результате относительного перемещения электропроводящего тела и магнитного потока. Впервые наиболее подробно вихревые токи исследованы французским физиком Ж. Фуко и часто называются его именем (токи Фуко). Замыкаясь в электропроводящем теле, вихревые токи образуют электрические контуры, индуцирующие встречный магнитный поток, сцепляющийся с внешним магнитным полем. В результате взаимодействия этих встречных магнитных потоков происходит изменение ЭДС измерительной или полного электрического сопротивления возбуждающей индуктивных катушек преобразователя. Величины этих изменений, являющихся первичным информативным параметром, зависят от параметров объекта контроля, величины напряженности внешнего электромагнитного поля Ни и расстояния а до объекта контроля.

В настоящее время разработано большое количество различных конструкций преобразователей, которые принято классифицировать по следующим признакам:

- по типу преобразования параметров объекта контроля в выходной сигнал вихретокового преобразователя;

- по способу соединения катушек преобразователя;

- по расположению преобразователя относительно объекта контроля.

По первому признаку преобразователи разделяют на параметрические и трансформаторные.

Параметрический преобразователь имеет лишь одну индуктивную возбуждающую катушку, активное и реактивное сопротивление которой зависит от параметров объекта и условий его контроля.

Трансформаторный вихретоковый преобразователь содержит не менее двух индуктивно связанных катушек (возбуждающих и измерительных) и преобразует контролируемый параметр в ЭДС измерительной катушки.

По второму признаку вихретоковые преобразователи делят на абсолютные и дифференциальные.

Абсолютным называют вихретоковый преобразователь, сигнал которого определяется абсолютным значением параметра объекта контроля.

Дифференциальным - сигнал, которого определяется приращением параметра объекта контроля.

В зависимости от расположения относительно объекта контроля преобразователи разделяют на проходные, накладные и комбинированные. В свою очередь проходные разделяют на наружные, внутренние, погружные и экранные.

При диагностировании нефтегазового оборудования с применением вихретокового вида контроля обычно применяют накладные трансформаторные преобразователи карандашного типа. Схема контроля с использованием таких преобразователей приведена на рис. Вихревые токи в объекте контроля возбуждаются с помощью индуктивной катушки. Напряженность магнитного поля, создаваемого индуктивной катушкой, составляет Ни, напряженность встречного магнитного поля, создаваемого вихревыми токами, - Нв. Результаты взаимодействия этих полей регистрируют с помощью измерительной катушки.

Распределение плотности вихревых токов:

 

1 - вихревые токи;

 

2 - объект контроля.

 

 

Плотность вихревых токов имеет неравномерное распределение в объекте контроля. Плотность максимальна на поверхности объекта в контуре, диаметр которого близок к диаметру контура возбуждающей катушки, и убывает до нуля на оси катушки при увеличении расстояния r. С увеличением глубины объекта контроля плотность вихревых токов также убывает. На рис. приведены разрез объекта контроля по оси возбуждающей катушки и соответствующая эпюра распределения плотности вихревых токов в зависимости от удаления r от оси катушки.

Глубина проникновения вихревых токов в объект контроля зависит от конструкции вихретокового преобразователя, формы объекта контроля и интенсивности затухания на глубине. Для накладного вихретокового преобразователя глубина проникновения вихревых токов в объект контроля, в глубине которого плотность вихревых токов в 2,7183 раза (в е раз) меньше, чем на поверхности, может быть ориентировочно определена по формуле

,

где r - радиус эквивалентного витка обмотки преобразователя; - обобщенный параметр вихретокового контроля, характеризующий свойства преобразователя и условия контроля

,

где w - круговая частота тока возбуждения; - магнитная постоянная; - магнитная проницаемость среды; - удельная электрическая проницаемость среды.

Глубина проникновения вихревых токов обусловливает соответственно и максимальную глубину залегания выявленных дефектов. Наиболее уверенно при вихретоковом контроле электропроводящих материалов выявляются поверхностные трещины, где плотность вихревых токов максимальна, а также подповерхностные трещины и пустоты, глубина залегания которых обычно не превышает 3...4 мм.

Помимо обнаружения дефектов вихретоковый вид неразрушающего контроля широко применяют в целях структуроскопии для контроля физико-механических свойств объектов, связанных со структурой, химическим составом и внутренними напряжениями их материалов. Кроме того, вихретоковые приборы и установки используют для контроля размеров объекта, параметров его вибрации, обнаружения электропроводящих объектов (металлоискатели) и других целей.

Достоинствами вихретокового контроля являются сравнительная простота, высокая производительность и чувствительность. Важным достоинством вихретокового контроля является также то, что его можно проводить при отсутствии непосредственного контакта между преобразователем и объектом контроля. Наличие изоляционных и лакокрасочных покрытий, толщина которых не превышает предельную величину, а также загрязнение поверхности проведению контроля не препятствуют.

Вихретоковый метод эффективно используют для контроля металлоконструкций технологического оборудования в зонах концентрации напряжений, в первую очередь в околошовных зонах сварных швов, а также для контроля валов, штоков, гильз и других подобных деталей, имеющих концентраторы напряжений в виде шпоночных пазов, галтелей, проточек, резьб и др. Вместе с тем этот метод не применяют для контроля самих сварных швов с неудаленным усилением, поэтому при диагностировании сосудов и аппаратов нефтегазовой промышленности вихретоковый контроль целесообразно использовать в сочетании с ультразвуковым, радиационным или акустико-эмиссионным методами.


Поделиться с друзьями:

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.054 с.