Ультразвук - это процесс распространения, колебаний в уп-пугой среде в виде продольных волн с частотой свыше 20 кГц. — КиберПедия 

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Ультразвук - это процесс распространения, колебаний в уп-пугой среде в виде продольных волн с частотой свыше 20 кГц.

2018-01-05 179
Ультразвук - это процесс распространения, колебаний в уп-пугой среде в виде продольных волн с частотой свыше 20 кГц. 0.00 из 5.00 0 оценок
Заказать работу

КОЛЕБАНИЯ, ВОЛНЫ, ЗВУК

Любые отклонения физического тела или параметра его со­стояния, то в одну, то в другую сторону от положения равновесия называется колебательным движением или просто колебанием.

Колебательное движение называется перио­дическим, если зна­чения физических величин, изменяющихся в процессе колебаний, по­вторяются через равные промежутки вре­мени.

Гармоническими называются колебания, совершающиеся по закону sin или cos.

s = Asin (ωt +φ0), s = Acos (ωt +φ0)

Они совершаются под действием квазиупругих сил, т.е. сил, пропор­циональных смещению

F = -kx

Основными характеристиками колебаний являются:

1. Смещение (s) — это расстояние, на которое отклоняется ко­леблющаяся система в данный момент времени, от положения рав­новесия.

2. Амплитуда (А) — максимальное смещение.

3. Период (Т) — время одного полного колеба­ния.

4. Линейная частота (v) — это число колебаний в единицу време­ни, измеряется в Гц - это одно колебание в сек. v = 1/Т.

5. Циклическая или круговая частота (ω). Она связана с линей­ной частотой следующей зависи­мостью: ω= 2πv.

6. Фаза колебания (φ) характеризует состояние колеблющейся системы в любой момент вре­мени: φ = ωt + φ0 , φ0- начальная фаза колебания.

Колебательный процесс можно представить графически в виде развернутой или векторной диаграммы.

Развернутая диаграмма представляет собой график синусоиды или косинусоиды, по кото­рому можно определить смещение колеб­лющейся системы в любой момент времени.

 

Однако, любое сложное колебание можно представить в виде суммы гармонических. Это по­ложение определяет специальный метод диагностики -спектраль­ный анализ.

Совокупность гармонических составляющих, на которые раз­лагается сложное колебание, называется гармоническим спект­ром этого колебания.

Колебания распределяются на следующие основные виды:

1. Свободные - это идеальные колебания, которые не существу­ют в природе, но помогают понять сущность других видов колебаний и определить свойства реальной колебательной системы. Они совер­шаются с собственной частотой, которая зависит только от свойств самой колеблющейся системы. Собственную частоту и период бу­дем обозначать v0 и То.

2. Затухающие - это колебания, амплитуда которых со временем уменьшается, а частота не меняется и близка к собственной. Энергия в систему подается один раз. Уменьшение ампли­туды за единицу вре­мени характеризуется коэффициентом затухания β= r / 2m, где r - коэффициент трения, m - масса колеблющейся системы. Уменьше­ние амплитуды за период характеризуется логарифмическим декре­ментом затухания δ = βТ. Логарифмический декремент затухания — это логарифм отношения двух соседних амплитуд: δ = lg (Аt / A t+T).

3. Вынужденные - это колебания, которые совершаются под дей­ствием периодически изменяющейся внешней силы. Они соверша­ются с частотой вынуждающей силы. Явление резкого увеличения амплитуды колебаний при прибли­жении частоты вынуждающей силы к собствен­ной частоте системы называется резонансом. Это увели­чение будет зависеть от амплитуды вынуж­дающей силы, массы сис­темы и коэффициента затухания.

4. Автоколебаниями называются незатухающие колебания, суще­ствующие в какой-либо системе при отсутствии переменного внеш­него воздейст­вия, а сами системы — автоколебательными. Амплиту­да и частота автоколебаний зависят от свойств самой автоколебатель­ной системы. Автоколебательная система состоит из трех основных элементов: 1) собственно колебатель­ная система; 2) источник энер­гии; 3) механизм обратной связи. Ярким примером такой системы в биологии является сердце.

Определим энергию тела массой m, совершаю­щего свободные гармонические колебания с амплитудой А и циклической частотой ω.

s = Asin ωt

Полная энергия складывается из потенциальной и кинетической энергии:

W=Wn+Wk

Wn=ks2/2=(kA2/2)sin2ωt, где k=mω

W=mυ2/2, учитывая, что υ=ds/dt=Aωcosωt

получим Wk=(mω2A2/2)*cos2ωt

Тогда полная энергия:

W=(mω2A2/2)(sin2ωt+cos2ωt)=(mω2A2)/2

Процесс распространения колебаний в про­странстве называ­ется волновым движением или просто волной.

Известны два вида волн: механические и элек­тромагнитные. Ме­ханические волны распро­страняются только в упругих средах. Механиче­ские волны делятся на два вида: поперечные и продоль­ные.

Если колебания частиц совершаются перпен­дикулярно направ­лению распространения волны, то она называется поперечной.

Если, колебания частиц совпадают с направ­лением распрост­ранения волны, то она называется продольной.

Рассмотрим, основные характеристики волно­вого движения. К ним относятся:

1. Все параметры колебательного процесса (s, A, v, ω, Т, φ).

2. Дополнительные параметры, характеризую­щие только волно­вое движение:

а) Фазовая скорость (υ) - это скорость, с которой колебания распространяются в пространстве.

б) Длина волны (λ) - это наименьшее расстояние между двумя частицами волнового пространства, колеблющихся в одинаковых фа­зах или расстоя­ние, на которое распространяется волна за время од­ного периода. Характеристики связаны между собой : λ=υT, λ=υv

Колебательное движение любой частицы волнового пространства определяется уравне­нием волны. Пусть в точке О колебания совер­шаются по закону : S = A sinωt

Тогда в произвольной точке С закон колебаний: sc = sinω (t-∆t), где ∆t=x/υ=x/λv, xc=Asin(2πv t-(2πvx/λx))

s = Asin (ωt-2πх/λ) — это уравнение волны. Оно определяет закон колебания в любо й точке волнового пространства 2πх/λ = φ0 называется начальной фазой колебания в произвольной точке про­странства.

3. Энергетические характеристики волны:

а. Энергия колебания одной частицы: W = (mω2A2)/2

б. Энергия колебания всех частиц, содержащихся в единице объема волнового пространства, называется объемной плотнос­тью энергии: ε = W0/V

где Wo = εV есть полная энергия всех колеблю­щихся частиц в любом объеме.

Если n0 — концентрация частиц, то ε = n0W = n02A2/2, но nom = p, тогда ε = (pω2A2)/2

Энергия колебания постоянно передается другим частицам по направлению распространения волны.

Величина, численно равная среднему значению энергии, перено­симой волной в единицу вре­мени через некоторую поверхность, пер­пендикулярную направлению распространения волны, называется потоком энергии через эту поверхность.

Ps=W0/t (Вт)

Поток энергии, приходящийся на единицу поверхности, назы­вается плотностью потока энергии или интенсивностью волны.

J=Ps/s = W0/st (Вт)

Частным случаем механических волн являются звуковые волны:

Звуковыми волнами называются колебания частиц, распрост­раняющихся в упругих средах в виде продольных волн с частотой от 16 до 20000 Гц.

Для звуковых волн справедливы те же характе­ристики, что и для любого волнового процесса, однако имеется и некоторая специфика.

1. Интенсивность звуковой волны называют силой звука. J=Ps/s (Вт/м2)

Для этой величины приняты специальные единицы измерения- Белы (Б) и децибелы (дцБ). Шкала силы звука, выраженная в Б или дцБ, называется логарифмической. Для перевода из системы СИ в логарифмическую шкалу исполь­зуется следующая формула: J (с) =LgJ/J0 (Вт/м2)

где Jo = 10-12 Вт/м2 - некоторая пороговая интен­сивность.

2. Для описания звуковых волн используется величина, которая называется звуковым давле­нием.

Звуковым или акустическим давлением называется добавоч­ное давление (избыточное над средним давлением окружающей среды) в местах наибольшего сгущения частиц в звуковой волне.

В системе СИ оно измеряется в Па, а внесистем­ной единицей является 1 акустический бар = 10-1Па.

3. Важное значение имеет так же форма колеба­ний частиц в зву­ковой волне, которая определя­ется гармоническим спектром звуко­вых колеба­ний (∆v).

Все перечисленные физические характеристики звука называют­ся объективными, т.е. не зависящими от нашего восприятия. Они опреде­ляются с помощью физических приборов. Наш слуховой аппарат способен дифференцировать (различать) звуки по высоте тона, тембру и громкости. Эти характеристики слу­хового ощущения называются субъективными. Изменение в воспри­ятии звука на слух всегда связано с изменением физических парамет­ров звуковой волны.

Высота тона определяется главным образом частотой колебаний в звуковой волне и незначи­тельно зависит от силы звука. Чем больше частота, тем выше тон звука. В этом отношении диапазон звуков, вос­принимаемых слуховым аппаратом, делится на октавы: 1- (16-32) Гц; 2 -(32-64)Гц; 3-(64-128) Гц; и т.д., всего 10 октав.

Если колебания частиц в звуковой волне гармонические, то та­кой тон звука называ­ется простым или чистым. Такие звуки дают камертон и звуковой генератор.

Если колебания не гармонические, но периоди­ческие, то такой тон звука называется сложным..

Если сложные звуковые колебания не периоди­чески меняют свою интенсивность, частоту и фазу, то такой звук принято называть шумом.

Сложные тона одной и той же высоты, в которых форма колеба­ний различна, по разному воспри­нимаются человеком (например, одна и та же нота на различных музыкальных инструментах). Это раз­личие в восприятии носит название тембра звука. Он определяется спектром частот гармонических колебаний, из которых состоит слож­ный звук.

Громкость восприятия звука зависит главным образом от силы звука, а так же от частоты. Эта зависимость определяется психофизи­ческим законом Вебера-Фехнера:

При возрастании силы звука в геометрической прогрессии (J,J2, J3,...) ощущение громкости на одной и той же частоте увели­чивается в арифметической прогрессии (Е, 2Е, ЗЕ,...).

E=kLg J/J0

где k - коэффициент, зависящий от частоты звука. Громкость изме­ряется также как и сила звука в Белах (Б) и децибелах (дцБ). ДцБ гром­кости называется фоном (Ф) в отличии от дцБ силы звука. Условно считают, что для частоты 1000 Гц, шкалы громкости и силы звука полностью совпадают, т.е. k = 1.

Использование звуковых методов в диагно­стике

1. Аудиометрия - метод измерения остроты слуха по восприя­тию стандартизированных по частоте и интенсивности звуков.

2. Аускультация - выслушивание звуков, возникающих при ра­боте различных органов, (сердца, легких, кровеносных сосудов и др.)

3. Перкуссия - выслушивание звучания отдель­ных частей тела при их простукивании.

Законы отражения

Среда, во всех точках которой скорость рас­пространения света одинакова, называ­ется оптически однородной средой. Границей двух сред называется поверхность, разделяю­щая две оптически неоднородные среды. Угол α между лучом падающим и перпендикуляром, восста­новленным к границе двух сред в точке падения, называется уг­лом падения. Угол β между лучом отраженным и перпендикуля­ром, вое-становленным к границе раздела двух сред в точке падения, на­зывается углом от­ражения.

I закон: Луч падающий, перпендикуляр, вос­становленный к границе раздела двух сред в точке падения, и луч отраженный лежат в одной плоскости.

II закон: Угол падения равен углу отражения: α = β

 

 

I закон: Луч падающий, перпендикуляр, вос­становленный к границе раздела двух сред в точке падения, и преломленный луч лежат в одной плоскости.

I I закон: Отношение синуса угла падения к синусу угла пре­ломления есть величина по­стоянная для данных двух сред и на­зыва­ется показателем преломления второй среды от­носитель­но первой:

sinα/sinγ = const = n21

Линзы

Линзой называется прозрачное тело, ограни­ченное двумя сферическими поверхностями, и по показателю преломления от­личающееся от окружающей среды.

Принято считать, что в та­ких линзах преломление лучей происходит в од­ной плоскости (ПП), которая называется пре­ломляющей.

Прямая, проходящая через центры сфериче­ских поверхнос­тей, ограничивающих линзу, (SS') называется главной оптичес­кой осью.

Точка пересечения главной оптической оси с преломляющей плоскостью называется оп­тическим центром линзы (О). Любая прямая, проходящая через оптический центр линзы, называется оптической осью (АА). Лучи, па­раллельные главной оптической оси, после прелом­ления в линзе собираются в одной точке, называемой главным фокусом линзы (F). Точка пересечения оптической оси с фо­кальной плоскостью называется побочным фокусом (F').

Такие линзы называются собирающими. Парал­лельный пучок лучей после преломления в линзе может рассеиваться, тогда в од­ной точке, назы­ваемой мнимым фокусом, соберутся продолже­ния этих лучей. Такие линзы называ­ются рас­сеивающими.

 

Плоскость, перпендикулярная главной опти­ческой оси и проходящая через главный фокус линзы, называется фокальной плоскостью.

В собирающих линзах изображение зависит от положения предмета. Если предмет находится между оптическим центром линзы и главным фокусом, то изображение будет мнимым, пря­мым и увеличенным.

 

Если предмет находится между фокусом и двой­ным фоку­сом, изображение - действитель­ное, обратное, увеличенное.

 

Если предмет находится между двойным и трой­ным фокусом и далее, изображение - действи­тельное, обратное, уменьшенное.

 

Рассеивающие линзы всегда дают мнимое, пря­мое и умень­шенное изображение.

Расстояние от оптического центра линзы до главного фокуса называется фокусным рас­стоянием F. Величина, обратная фокус­ному рас­стоянию, называется оптической силой линзы: D =1/F

Измеряется оптическая сила линзы в диоптриях (дптр). Одна диоптрия - это оптическая сила такой линзы, фокус­ное расстояние которой равно 1 м. У собирающих линз она положи­тельна, у рассеивающих отри­цательна. На прак­тике, для определения фокусного расстояния и опти­ческой силы линзы используют формулу тонкой линзы: D = 1/F = 1/d +1/f,

где d - расстояние от предмета до линзы, f - рас­стояние от лин­зы до изображения.

Изображения, полученные с помощью одной линзы, как пра­вило, отличаются от самого пред­мета. В этом случае говорят об искажении изо­бражения. Сферическая аберрация возни­кает потому, что края линзы от­клоняют лучи сильнее, чем центральная часть.

 

В ре­зультате, изображение светящейся точки на экране получается в виде расплывчатого пятна, а изображение протяженного предме­та становится не резким, размытым. Для устранения сфериче­ской аберрации используют центрированные оп­тические системы, со­стоящие из собирающих и рассеивающих линз. Центрированной назы­ва­ется система линз, имеющих общую главную оптическую ось.

Хроматическая аберрация обусловлена дис­персией света, так как линзу можно предста­вить в виде призмы. В этом случае фо­кусное расстоя­ние для лучей различной длины волны оказыва­ет­ся неодинаковым.

 

Поэтому при освещении предмета сложным, на­пример белым светом, точка на экране будет видна в виде окрашенного пятна, а изображение протяженного предмета будет также окрашен­ным и нерезким. Хроматическую аберрацию можно исключить, комбинируя собирающие и рассеивающие линзы, сделанные из стекол раз­личных сортов, обладающих раз­ными относи­тельными дисперсиями. Такие системы линз на­зыва­ются ахроматами. Причиной астигма­тизма является неодинаковое прелом­ление лу­чей в различных меридиональных плоскостях линзы. Различают два вида астигма­тизма. Пер­вый, так называемый, астигматизм на­клонных лучей, возникает в линзах, имеющих сфериче­скую фор­му поверхности, но лучи падают на линзу под значительным уг­лом к главной опти­ческой оси. В этом случае лучи во взаимно пер­пендикулярных плоскостях прелом­ляются не­одинаково и точка на экране будет видна как ли­ния, а у протяженно­го предмета искажается форма, например, квадрат будет виден как пря­моугольник.

 

Второй вид астигматизма, правильный, возни­кает при отклонении поверхности линзы от сфе­рической, когда по различным меридиональ­ным плоскостям неоди­наковый радиус кри­визны, т.е. форма поверхности в этой плоско­сти не является сферической. Астигматизм наклон­ных лучей устраняется поворотом линзы к изображаемому предмету. Правиль­ный астигма­тизм устраняется путем подбора радиусов кривизны и оптических сил преломляющих поверхностей. Это чаще всего цилиндрические линзы. Оптическую сис­тему, исправленную кро­ме сферической и хро­матической аберраций также и на астигма­тизм, называют анастигматом.

 

Оптическая система глаза

Глаз человека является своеобразным оптиче­ским прибором, занимающим в оптике особое место. Это объясняется, во-первых, тем, что мно­гие оптические инструменты рассчитаны на зри­тель­ное восприятие, во-вторых, глаз челове­ками животного), как усовершенствованная в процессе эволюции биологическая система, приносит не­которые идеи по конструированию и улучшению оптических систем. Глаз может быть представлен как центрированная оптическая система, образо­ванная роговицей (Р), жидкостью передней каме­рой (К) и хрусталиком (X), огра­ниченная спереди воздушной сре­дой, сзади - стекловидным телом. Главная оптическая ось (ОО) проходит через оп­тические центры рого­вицы и хруста­лика. Кроме того, различают еще зрительную ось глаза (30), кото­рая определяет направление наибольшей светочувствительности и проходит через центры хрусталика и желтого пятна (Ж). Угол меж­ду главной оптической и зрительной осями состав­ляет около 5'. Основное преломление света про­исходит на внешней границе роговицы, оптиче­ская сила которой равна приблизительно 40 дптр, хрусталика - около 20 дптр, а всего глаза - около 60 дптр. Приспособление глаза к четкому виде­нию различно удален­ных предметов называют аккомодацией. У взрослого здорового человека при приближении предмета к глазу до расстоя­ния 25 см аккомодация совершается без напряже­ния и благодаря привычке рассматривать пред­меты, находящиеся в руках, глаз чаще всего ак­комодирует именно на это расстояние, назы­вае­мое расстоянием наилучшего зрения. Для харак­теристики разрешающей способности глаза ис­поль­зуют наименьший угол зрения, при котором человеческий глаз еще различает две точки предмета. В медицине разрешающую способ­ность глаза оценивают ост­ротой зрения. За норму остроты зрения принимается единица, в этом случае наименьший угол зрения равен 1'.

КОЛЕБАНИЯ, ВОЛНЫ, ЗВУК

Любые отклонения физического тела или параметра его со­стояния, то в одну, то в другую сторону от положения равновесия называется колебательным движением или просто колебанием.

Колебательное движение называется перио­дическим, если зна­чения физических величин, изменяющихся в процессе колебаний, по­вторяются через равные промежутки вре­мени.

Гармоническими называются колебания, совершающиеся по закону sin или cos.

s = Asin (ωt +φ0), s = Acos (ωt +φ0)

Они совершаются под действием квазиупругих сил, т.е. сил, пропор­циональных смещению

F = -kx

Основными характеристиками колебаний являются:

1. Смещение (s) — это расстояние, на которое отклоняется ко­леблющаяся система в данный момент времени, от положения рав­новесия.

2. Амплитуда (А) — максимальное смещение.

3. Период (Т) — время одного полного колеба­ния.

4. Линейная частота (v) — это число колебаний в единицу време­ни, измеряется в Гц - это одно колебание в сек. v = 1/Т.

5. Циклическая или круговая частота (ω). Она связана с линей­ной частотой следующей зависи­мостью: ω= 2πv.

6. Фаза колебания (φ) характеризует состояние колеблющейся системы в любой момент вре­мени: φ = ωt + φ0 , φ0- начальная фаза колебания.

Колебательный процесс можно представить графически в виде развернутой или векторной диаграммы.

Развернутая диаграмма представляет собой график синусоиды или косинусоиды, по кото­рому можно определить смещение колеб­лющейся системы в любой момент времени.

 

Однако, любое сложное колебание можно представить в виде суммы гармонических. Это по­ложение определяет специальный метод диагностики -спектраль­ный анализ.

Совокупность гармонических составляющих, на которые раз­лагается сложное колебание, называется гармоническим спект­ром этого колебания.

Колебания распределяются на следующие основные виды:

1. Свободные - это идеальные колебания, которые не существу­ют в природе, но помогают понять сущность других видов колебаний и определить свойства реальной колебательной системы. Они совер­шаются с собственной частотой, которая зависит только от свойств самой колеблющейся системы. Собственную частоту и период бу­дем обозначать v0 и То.

2. Затухающие - это колебания, амплитуда которых со временем уменьшается, а частота не меняется и близка к собственной. Энергия в систему подается один раз. Уменьшение ампли­туды за единицу вре­мени характеризуется коэффициентом затухания β= r / 2m, где r - коэффициент трения, m - масса колеблющейся системы. Уменьше­ние амплитуды за период характеризуется логарифмическим декре­ментом затухания δ = βТ. Логарифмический декремент затухания — это логарифм отношения двух соседних амплитуд: δ = lg (Аt / A t+T).

3. Вынужденные - это колебания, которые совершаются под дей­ствием периодически изменяющейся внешней силы. Они соверша­ются с частотой вынуждающей силы. Явление резкого увеличения амплитуды колебаний при прибли­жении частоты вынуждающей силы к собствен­ной частоте системы называется резонансом. Это увели­чение будет зависеть от амплитуды вынуж­дающей силы, массы сис­темы и коэффициента затухания.

4. Автоколебаниями называются незатухающие колебания, суще­ствующие в какой-либо системе при отсутствии переменного внеш­него воздейст­вия, а сами системы — автоколебательными. Амплиту­да и частота автоколебаний зависят от свойств самой автоколебатель­ной системы. Автоколебательная система состоит из трех основных элементов: 1) собственно колебатель­ная система; 2) источник энер­гии; 3) механизм обратной связи. Ярким примером такой системы в биологии является сердце.

Определим энергию тела массой m, совершаю­щего свободные гармонические колебания с амплитудой А и циклической частотой ω.

s = Asin ωt

Полная энергия складывается из потенциальной и кинетической энергии:

W=Wn+Wk

Wn=ks2/2=(kA2/2)sin2ωt, где k=mω

W=mυ2/2, учитывая, что υ=ds/dt=Aωcosωt

получим Wk=(mω2A2/2)*cos2ωt

Тогда полная энергия:

W=(mω2A2/2)(sin2ωt+cos2ωt)=(mω2A2)/2

Процесс распространения колебаний в про­странстве называ­ется волновым движением или просто волной.

Известны два вида волн: механические и элек­тромагнитные. Ме­ханические волны распро­страняются только в упругих средах. Механиче­ские волны делятся на два вида: поперечные и продоль­ные.

Если колебания частиц совершаются перпен­дикулярно направ­лению распространения волны, то она называется поперечной.

Если, колебания частиц совпадают с направ­лением распрост­ранения волны, то она называется продольной.

Рассмотрим, основные характеристики волно­вого движения. К ним относятся:

1. Все параметры колебательного процесса (s, A, v, ω, Т, φ).

2. Дополнительные параметры, характеризую­щие только волно­вое движение:

а) Фазовая скорость (υ) - это скорость, с которой колебания распространяются в пространстве.

б) Длина волны (λ) - это наименьшее расстояние между двумя частицами волнового пространства, колеблющихся в одинаковых фа­зах или расстоя­ние, на которое распространяется волна за время од­ного периода. Характеристики связаны между собой : λ=υT, λ=υv

Колебательное движение любой частицы волнового пространства определяется уравне­нием волны. Пусть в точке О колебания совер­шаются по закону : S = A sinωt

Тогда в произвольной точке С закон колебаний: sc = sinω (t-∆t), где ∆t=x/υ=x/λv, xc=Asin(2πv t-(2πvx/λx))

s = Asin (ωt-2πх/λ) — это уравнение волны. Оно определяет закон колебания в любо й точке волнового пространства 2πх/λ = φ0 называется начальной фазой колебания в произвольной точке про­странства.

3. Энергетические характеристики волны:

а. Энергия колебания одной частицы: W = (mω2A2)/2

б. Энергия колебания всех частиц, содержащихся в единице объема волнового пространства, называется объемной плотнос­тью энергии: ε = W0/V

где Wo = εV есть полная энергия всех колеблю­щихся частиц в любом объеме.

Если n0 — концентрация частиц, то ε = n0W = n02A2/2, но nom = p, тогда ε = (pω2A2)/2

Энергия колебания постоянно передается другим частицам по направлению распространения волны.

Величина, численно равная среднему значению энергии, перено­симой волной в единицу вре­мени через некоторую поверхность, пер­пендикулярную направлению распространения волны, называется потоком энергии через эту поверхность.

Ps=W0/t (Вт)

Поток энергии, приходящийся на единицу поверхности, назы­вается плотностью потока энергии или интенсивностью волны.

J=Ps/s = W0/st (Вт)

Частным случаем механических волн являются звуковые волны:

Звуковыми волнами называются колебания частиц, распрост­раняющихся в упругих средах в виде продольных волн с частотой от 16 до 20000 Гц.

Для звуковых волн справедливы те же характе­ристики, что и для любого волнового процесса, однако имеется и некоторая специфика.

1. Интенсивность звуковой волны называют силой звука. J=Ps/s (Вт/м2)

Для этой величины приняты специальные единицы измерения- Белы (Б) и децибелы (дцБ). Шкала силы звука, выраженная в Б или дцБ, называется логарифмической. Для перевода из системы СИ в логарифмическую шкалу исполь­зуется следующая формула: J (с) =LgJ/J0 (Вт/м2)

где Jo = 10-12 Вт/м2 - некоторая пороговая интен­сивность.

2. Для описания звуковых волн используется величина, которая называется звуковым давле­нием.

Звуковым или акустическим давлением называется добавоч­ное давление (избыточное над средним давлением окружающей среды) в местах наибольшего сгущения частиц в звуковой волне.

В системе СИ оно измеряется в Па, а внесистем­ной единицей является 1 акустический бар = 10-1Па.

3. Важное значение имеет так же форма колеба­ний частиц в зву­ковой волне, которая определя­ется гармоническим спектром звуко­вых колеба­ний (∆v).

Все перечисленные физические характеристики звука называют­ся объективными, т.е. не зависящими от нашего восприятия. Они опреде­ляются с помощью физических приборов. Наш слуховой аппарат способен дифференцировать (различать) звуки по высоте тона, тембру и громкости. Эти характеристики слу­хового ощущения называются субъективными. Изменение в воспри­ятии звука на слух всегда связано с изменением физических парамет­ров звуковой волны.

Высота тона определяется главным образом частотой колебаний в звуковой волне и незначи­тельно зависит от силы звука. Чем больше частота, тем выше тон звука. В этом отношении диапазон звуков, вос­принимаемых слуховым аппаратом, делится на октавы: 1- (16-32) Гц; 2 -(32-64)Гц; 3-(64-128) Гц; и т.д., всего 10 октав.

Если колебания частиц в звуковой волне гармонические, то та­кой тон звука называ­ется простым или чистым. Такие звуки дают камертон и звуковой генератор.

Если колебания не гармонические, но периоди­ческие, то такой тон звука называется сложным..

Если сложные звуковые колебания не периоди­чески меняют свою интенсивность, частоту и фазу, то такой звук принято называть шумом.

Сложные тона одной и той же высоты, в которых форма колеба­ний различна, по разному воспри­нимаются человеком (например, одна и та же нота на различных музыкальных инструментах). Это раз­личие в восприятии носит название тембра звука. Он определяется спектром частот гармонических колебаний, из которых состоит слож­ный звук.

Громкость восприятия звука зависит главным образом от силы звука, а так же от частоты. Эта зависимость определяется психофизи­ческим законом Вебера-Фехнера:

При возрастании силы звука в геометрической прогрессии (J,J2, J3,...) ощущение громкости на одной и той же частоте увели­чивается в арифметической прогрессии (Е, 2Е, ЗЕ,...).

E=kLg J/J0

где k - коэффициент, зависящий от частоты звука. Громкость изме­ряется также как и сила звука в Белах (Б) и децибелах (дцБ). ДцБ гром­кости называется фоном (Ф) в отличии от дцБ силы звука. Условно считают, что для частоты 1000 Гц, шкалы громкости и силы звука полностью совпадают, т.е. k = 1.

Использование звуковых методов в диагно­стике

1. Аудиометрия - метод измерения остроты слуха по восприя­тию стандартизированных по частоте и интенсивности звуков.

2. Аускультация - выслушивание звуков, возникающих при ра­боте различных органов, (сердца, легких, кровеносных сосудов и др.)

3. Перкуссия - выслушивание звучания отдель­ных частей тела при их простукивании.

Ультразвук - это процесс распространения, колебаний в уп-пугой среде в виде продольных волн с частотой свыше 20 кГц.

Ультразвук получают с помощью специальных аппаратов, осно­ванных на явлениях магнитост­рикции - при низких частотах и обратном пьезоэлектрическом эффекте - при высоких частотах.


Поделиться с друзьями:

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.122 с.