Продольное сжатие и разжатие. Закон Гука. — КиберПедия 

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Продольное сжатие и разжатие. Закон Гука.

2018-01-04 862
Продольное сжатие и разжатие. Закон Гука. 0.00 из 5.00 0 оценок
Заказать работу

При продольном сжатии или растяжении одного упругого образца длинны и площади сечения удлинение образца определяется из опыта выражением: (202)

где - коэффициент упругости, определяемый свойствами материала образца.

Величина называется относительной деформацией. Величина , обратная коэффициенту упругости, называется модулем упругости Юнга.

С учётом этих обозначений закон Гука для деформации продольного сжатия или растяжения имеет вид: (203)

где - называется напряжением (отношение упругих сил в деформированном образце к площади его поперечного сечения).

При изменении продольных размеров одновременно и поперечные. Изменение диаметра образца (однородного цилиндра) также подчиняется закону Гука:

(204)

где: -коэффициент поперечного сжатия при продольном растяжении. Сравнивая (203) и (204) получим: (205)

Величина называется коэффициентом Пуассона.

Рис.48

Если деформирующая сила изменяется от нуля до , абсолютная деформация изменяется, соответственно, от нуля до то образец приобретает потенциальную энергию упругих деформаций, численно равную работе деформирующей силы. Эта работа равна площади заштрихованной фигуры (рис.48), т.е: Используя закон Гука, получим: (206)

А плотность энергии, соответственно:

Деформация сдвига и кручения.

Деформация сдвига.

Деформация сдвига возникает при действии на тело касательных усилий (рис. 49). Если к верхней грани образца, имеющего форму параллелепипеда, приложена касательная сила , распределённая по грани площади , грань сдвигается на расстояние , которое называется абсолютной деформацией при сдвиге.

Рис.49

Отн. деформацией называют отношение абсолютной деформации к поперечным размерам . Для сдвига закон Гука принимает форму: (208)

где -коэффициент сдвига, определяемый свойствами материала образца, величина, обратная , называется модулем сдвига:

Поскольку упругие деформации, для которых формулируется закон Гука, имеют место только при маленьких значениях деформации, закон Гука для сдвига принимает вид:

(209)

Деформация кручения.

 

Деформации кручения возникают при закручивании одного основания образца относительно другого.

По закону Гука для этого типа деформации:ы

(210)

где - угол закручивания, - длинна образца, - момент закручивающих сил, - коэффициент кручения.

 

(продолжение) 26.Деформация сдвига и кручения.

 

Величина называется модулем кручения т. е.

(211)

Одновременно с закручиванием образца происходит сдвиг его слоёв. Угол сдвига определяется из закона Гука.

(212)

Угол сдвига можно получить и из чисто геометрических соображений:

(213)

Сравнивая (212) и (213), получим

(214)

Момент распределённых сил, приложенных к нижнему основанию образца, получим, используя (214).

Рис.51

 

 

Из рис.51 видно, что элементарный момент закручивающих сил, приложенных к элементу основания, равен:

(215)

Полный момент:

(216)

Сравнивая (210) и (216), получаем связь между модулями сдвига и кручения:

Закон всемирного тяготения.

Закон всемирного тяготения получен Ньютоном из наблюдений видимого движения планет Солнечной системы, используя законы динамики. В векторной форме закон всемирного тяготения, определяющий силы гравитационного взаимодействия, имеет вид:

 

(218)

где - масса источника гравитационного поля, - величина пробной массы, -радиус-вектор точечной пробной массы относительно центра масс источника поля, - гравитационная постоянная.

 

Силовой характер поля источника является сила, действующая на единичную пробную массу, помещённую в данную точку поля. Эта величина называется напряжённостью поля:

(219)

Следует отметить, что закон всемирного тяготения справедлив только для точечных взаимодействующих масс. Кроме того, массы тел, фигурирующие в законе всемирного тяготения, имею другой смысл, нежели в законах динамики. Это –“тяготеющие”,”тяжёлые” или ”гравитационные” массы.


Поделиться с друзьями:

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.015 с.