МЕХАНИЧЕСКИЕ СВОЙСТВА СПЛАВОВ — КиберПедия 

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

МЕХАНИЧЕСКИЕ СВОЙСТВА СПЛАВОВ



Цель работы: Изучить маркировку сталей. Познакомиться с механическими свойствами, научиться определять твердость.

 

Теоретические сведения

Сталь – сплав железа с углеродом (до 2,14% С). В сталях постоянно присутствуют примеси, которые попадают при выплавке. К ним относятся: марганец и кремний, которые являются полезными (технологическими), а так же сера и фосфор, которые являются вредными. Сера вызывает красноломкость стали – хрупкость при горячей обработке давлением. В сталях сера находится в виде сульфита FeS, который образует с железом легкоплавкую эвтектику, отличающуюся низкой температурой плавления (9880 С) и располагающуюся по границам зерен. При горячей деформации границы зерен оплавляются и сталь хрупко разрушается. Фосфор вызывает в сталях хладноломкость – хрупкость при низких температурах. Каждая сотая доля фосфора повышает порог хладноломкости на 250 С. Содержание серы и фосфора влияет на качество сталей и в зависимости от их содержания стали подразделяются на 4 группы:

1. Стали обыкновенного качества содержат примерное количество серы и фосфора (до 0,045% каждого). Стали обозначают марками Ст0, Ст1, Ст 2 … Ст6. Буквы Ст обозначает сталь, цифры – условный номер марки, чем больше число, тем больше содержание углерода. Ориентировочно можно считать, что цифра обозначает содержание углерода в десятых долях процента. Для обозначения степени раскисления добавляют индексы: кп – кипящая, сп – спокойная, пс – полуспокойная (Ст3 кп, Ст3пс);

2. Качественные стали содержат серы и фосфора до 0,035% каждого, регламентированы по химическому составу и механическим свойствам. Марки стали обозначают цифрами, которые указывают среднее содержание углерода в сотых долях процента. Стали 08, 20, 25,…, 60. Например, сталь 20–0,20% С.

Инструментальные стали содержат более 0,7% углерода. Цифра в марке указывает на среднее содержание углерода в десятых долях процента. Например, сталь У7 – 0,7% С, У13 – 1,3% С.

3. Высококачественные стали содержат не более 0,025% Si и P каждого. Обозначаются буквой А, стоящей в конце марки. Например, У12А.

4. Особовысококачественные стали содержат не более 0,015% S и 0,025% P. В конце марки стоит буква, указывающая способ переплава. Например, Ш – электрошлаковый, ВДП – вакуумно-дуговой, ЭЛП – электронно-лучевой.

Легированные стали. Легирующие элементы обозначают буквами: Х – хром, Н – никель, Г – марганец, С – кремний, В – вольфрам, М – молибден, Ф – ванадий, К – кобальт, Ю – алюминий, Д – медь. Первая цифра указывает на среднее содержание углерода в стали в сотых долях процента, а цифры, следующие за буквами – процентное содержание этих элементов. Например, 30ХН3М – 0,30% С, 1% Cr, 3% Ni, 1% Mo.



 

Механические свойства металлов и сплавов

 

При выборе материала исходят из комплекса свойств, которые подразделяют на механические, физические, химические и технологические.

Физические свойства определяют поведение материалов в тепловых, гравитационных, электромагнитных и радиационных полях. К физическим относятся такие свойства материалов как плотность, теплоемкость, температура плавления, термическое расширение, магнитные характеристики, теплопроводность, электропроводность.

Под химическими свойствами понимают способность материалов вступать в химическое взаимодействие с другими веществами, сопротивляемость окислению, проникновению газов и химически активных веществ. Характерным примером химического взаимодействия среды и металла является коррозия.

Технологические свойства металлов и сплавов характеризуют их способность подвергаться горячей и холодной обработке. Комплекс этих свойств включает в себя технологичность при выплавке, горячем и холодном деформировании, обработке резанием, термической обработке и, особенно, сварке.

При конструировании изделий в первую очередь руководствуются механическими свойствами материалов.

Механические свойства материалов характеризуют их способность сопротивляться деформированию и разрушению под действием различного рода нагрузок. Механические нагрузки могут быть статическими, динамическими и циклическими. Кроме того, материалы могут подвергаться деформации и разрушению как при разных температурных условиях, так и в различных, в том числе агрессивных средах. Для того, чтобы обеспечить надежную работу конкретных машин и приборов, необходимо учитывать условия эксплуатации, т.е. к материалу предъявляют эксплуатационные требования.



К основным механическим свойствам относят прочность, упругость, ударную вязкость, пластичность, твердость. Механические свойства некоторых марок сталей приведены в таблице 3.1.

Для определения механических свойств материалов разработаны различные методы испытаний. При статических методах материал подвергают воздействию постоянной силы, возрастающей весьма медленно. При динамических испытаниях материал подвергают воздействию удара или силы быстро возрастающей.

 

Определение прочности, пластичности, упругости

 

Прочность – способность материала сопротивляться разрушению под действием внешних сил.

Пластичность – способность материала к пластической деформации, т.е. к получению остаточного изменения формы и размеров без разрушения.

Упругость – свойство материала восстанавливать свои размеры и форму после прекращения действия нагрузки.

Прочность, пластичность и упругость материала определяют при статических испытаниях на растяжение.

 

 

Рис. 3.1. Статические испытания на растяжение:

а – схема испытания; б – диаграмма растяжения

 

Испытания производятся на цилиндрических (или плоских) образцах с определенным соотношением между длиной l0 и диаметром d0. Образец растягивается под действием приложенной силы P (рис. 3.1.) до разрушения. Внешняя нагрузка вызывает в образце напряжение и деформацию. Напряжение σ – это отношение силы P к площади поперечного сечения F, МПа:

 

= .

 

Деформация характеризует изменение размеров образца под действием нагрузки, %

 

= 100,

 

где l – длина растянутого образца. Деформация может быть упругой (исчезающей после снятия нагрузки) и пластической (остающейся после снятия нагрузки).

При испытаниях строится диаграмма растяжения, представляющая собой зависимость напряжения от деформации (рис.3.1.).

После проведения испытаний определяются следующие характеристики механических свойств:

Предел упругости σУ – это максимальное напряжение, при котором в образце не возникают пластические деформации.

Предел текучести σТ – это напряжение, соответствующее площадке текучести на диаграмме растяжения (рис. 3.1, б). Если на диаграмме нет площадки текучести (что наблюдается для хрупких материалов), то определяют условный предел текучести σ0,2 – напряжение, вызывающее пластическую деформацию, равную 0,2%.

Предел прочности (или временное сопротивление) σВ – это напряжение, отвечающее максимальной нагрузке, которую выдерживает образец при испытании.

Относительное удлинение после разрыва – отношение приращения длины образца при растяжении к начальной длине l0, %:

= 100,

где lk – длина образца после разрыва.

Относительным сужением после разрыва называется уменьшение площади поперечного сечения образца, отнесенное к начальному сечению образца, %:

= ·100,

где Fk – площадь поперечного сечения образца в месте разрыва. Относительное удлинение и относительное сужение являются характеристиками пластичности.

Определение твердости

 

Твердость – способность материала сопротивляться проникновению в него стандартного тела (индентора).

Твердость материала испытывается при статическом характере вдавливания в него шарика, конуса или пирамиды.

Наиболее широкое применение нашли методы определения твердости по Бринеллю, Роквеллу и Виккерсу (рис. 3.2.).

Твердость по Бринеллю (НВ) определяется вдавливанием в испытываемую поверхность под нагрузкой Р стального шарика диаметром Д (рис.3.2, а).

После снятия нагрузки на поверхности образца остается отпечаток (лунка).

Твердость определяется по формуле

НВ = , Па,

где F – площадь поверхности отпечатка.

 

Рис. 3.2. Схемы определения твердости:

а – по Бринеллю; б – по Роквеллу; в – по Виккерсу

 

Практически величину твердости определяют не по формуле, а по прилагаемой к прибору таблице в зависимости от диаметра отпечатка.

Между твердостью по Бринеллю и пределом прочности металла существует приближенная зависимость:

 

σВ = k * НВ, МПа

 

Для стали σВ = (0,34…0,35) НВ.

Твердость по Роквеллу определяют по глубине отпечатка. Метод основан по вдавливании в испытуемый образец закаленного стального шарика диаметром 1,588 мм (шкала В) или алмазного конуса с углом при вершине 120о (шкалы А и С). Вдавливание производится под действием двух нагрузок – предварительной Р0, равной 100 Н и окончательной Р, равной 600, 1000, 1500 Н для шкал А, В и С, соответственно. Число твердости по Роквеллу HRA, HRB и HRC определяется по разности глубин вдавливания в условных единицах, обратно пропорциональных глубине проникновения индентора.

Твердость по Виккерсу определяют вдавливанием в испытываемую поверхность (шлифованную или даже полированную) четырехгранной алмазной пирамиды с углом при вершине 136о. Метод используют для определения твердости деталей малой толщины и тонких поверхностных слоев, имеющих высокую твердость. Число твердости по Виккерсу HV определяется отношением приложенной нагрузки к площади поверхности отпечатка.

Практически величину твердости определяют не по формуле, а по прилагаемым к прибору таблицам по измеренной величине d (диагональ отпечатка) рис. 3.2, в.

 

Определение ударной вязкости

 

Ударная вязкость– это способность материала поглощать механическую энергию.

Ударные испытания на изгиб проводятся над образцами стандартной формы на приборах, называемых маятниковыми копрами (рис. 1).

Для испытания образец устанавливаетсяна опорах копра (рис. 3.3, б) надрезом по ходу маятника. Маятник 1 весом Q и длиной l поднимают на высоту Н; в этом положении маятник обладает известным запасом потенциальной энергии. Затем маятник освобождают, и он, свободно падая, ударяет по образцу и разрушает его; на это расходуется часть энергии. Оставшаяся энергия поднимает маятник на некоторую высоту h, которую определяют по шкале копра.

Рис. 3.3. Схема испытания образца на маятниковом копре:

а) схема маятникового копра; б) установка образца на опорах копра.

 

Работу удара, поглощенную образцом, вычисляют по формуле

 

AH =Q(H—h) кДж.

Высоту подъема маятника до и после удара можно определить через углы α1 и α2 соответствующие его предельным отклонениям (что удобно определить по угловой шкале копра). Подсчет работы удара через углы производят по формуле

AH =Ql(cos α1— cos α2) кДж.

Сопротивление удару называют ударной вязкостью и подсчитывают в килограммометрах на квадратный сантиметр.

Ударная вязкость KC вычисляется по формуле

KC = AH /F кДж/м2,

где Ан—работа удара, затраченная на излом образца, кДж;

F—площадь поперечного сечения образца в месте надреза, м2.

КС - ударная вязкость; индексы V,U (KCV, КСU) характеризуют форму надреза.

Таблица 3.1.

Механические свойства сталей

Стали Содержание С, % Свойства
σв, МПа δ, % Ψ, % НВ, МПа
Ст 0 Ст 1 Ст 2 Ст 3 Ст 4 Ст 5 Ст 6 30ХГТ 12Х2Н4А ≤ 0,23 0,06–0,12 0,09–0,15 0,14–0,22 0,18–0,27 0,28–0,37 0,38–0,49 0,05–0,12 0,07–0,14 0,17–0,24 0,22–0,3 0,27–0,35 0,37–0,45 0,47–0,55 0,57–0,65 0,67–0,75 0,77–0,85 0,30 0,12 320–420 340–440 380–490 420–540 500–640 1 100 1 500 1 150     1 310 1 430 1 630 1 700 1 790 2 170 2 410 2 550 2 690 2 850   3 000
             

 

Порядок выполнения работы и содержание отчета

1. Изучить маркировку сталей;

2. Изучить механические свойства материалов и способы их определения;

3. Получить образцы для испытаний;

4. Провести испытания образцов на твердость;

5. По результатам испытаний и табличным данным построить графики, отражающие зависимость твердости, прочности и пластичности от содержания углерода;

6. Составить письменный отчет по работе. Содержание отчета: название и цель работы, теоретическая часть, таблица «Механические свойства сталей», графики, выводы.

 

Контрольные вопросы

1. Как маркируют стали обыкновенного качества, качественные, легированные?

2. Что такое прочность? Методы измерения, характеристики, единицы измерения.

3. Чем отличается упругая деформация от пластической?

4. Что такое пластичность? Методы измерения, характеристики, единицы измерения.

5. Что такое твердость? Методы определения твердости.

6. Что такое ударная вязкость?

7. Чем отличаются статические методы испытаний от динамических?

 

Лабораторная работа №4






Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...





© cyberpedia.su 2017 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав

0.014 с.