Передача сигналов внутри клетки — КиберПедия 

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Передача сигналов внутри клетки

2018-01-04 198
Передача сигналов внутри клетки 0.00 из 5.00 0 оценок
Заказать работу

 

Водорастворимые сигнальные молекулы, в том числе известные нейромедиаторы, пептидные гормоны и факторы роста, присоединяются к специфическим белковым рецепторам на поверхности клеток-мишеней. Поверхностные рецепторы связывают сигнальную молекулу (лиганд), проявляя большое сродство к ней, и это внеклеточное событие порождает внутриклеточный сигнал, изменяющий поведение клетки.

Рецепторы являются интегральными мембранными белками.

Существует множество сигнальных путей, начинающихся от мембранного рецептора.

 

(Изменение мембранных рецепторов сопровождается возникновением различных болезней. Так, например, дефект в рецепторе мужского полового гормона тестостерона приводит к тому, что особи с мужским генотипом (2А+ХУ) выглядят как самки; все млекопитающие, не подвергнувшиеся в эмбриональный период воздействию тестостерона, развиваются по женскому пути. Мутантные самцы имеют нормальные семенники, вырабатывающие тестостерон, но ткани этих самцов не реагируют на гормон из-за дефектности соответствующих рецепторов. В результате у таких самцов развиваются все вторичные половые признаки самок и их семенники не опускаются в мошонку, а остаются в брюшной полости. Этот синдром (тестикулярной феминизации или сидром Морриса) встречается у мышей, крыс, крупного рогатого скота, а также у человека. Хотя изменен только ген, кодирующий рецептор тестостерона, затронутыми оказываются все разнообразные типы клеток, в норме реагирующие на этот гормон. Таким образом, один внешний сигнал может включать различные наборы генов в клетках разного типа.

Подавляющее большинство поверхностных рецепторов для гидрофильных сигнальных молекул, связав лиганд на внешней стороне мембраны, претерпевает конформационное изменение. Это изменение создает внутриклеточный сигнал, изменяющий поведение клетки-мишени. Внутриклеточные сигнальные молекулы часто называют вторыми посредниками (мессенджерами, англ. messenger – посыльный), считая «первым посредником» внеклеточный лиганд. К вторичным (внутриклеточным) посредникам относят циклический аденозинмонофосфат (цАМФ), циклический гуанозин 3΄,5΄ - монофосфат (цГМФ), катионы кальция, инозит-1,4,5-трифосфат, диацилглицерин. Кроме этого, известны сигнальные пути опосредованные белками, липидами, в том числе свободными жирными кислотами, оксидом азота (NO), а также пути не содержащие вторичного посредника. Примером последнего варианта является влияние γ-интерферона на транскрипцию определенных генов, с антивирусной направленностью. Внутриклеточные сигнальные пути регуляции клеточной активности очень сложны, до конца не изучены и многие открытия еще впереди. Достаточно сказать, что внутриклеточный сигнальный путь с участием инсулина, несмотря на многолетние исследования, еще не расшифрован.

Межклеточные взаимодействия

Межклеточные взаимодействия в широком смысле слова имеют непосредственное отношение ко всем событиям и процессам, которые превращают многоклеточный организм в целостную систему. Именно они лежат в основе интегративных свойств организма, тонкой сети регуляторных и авторегуляторных процессов. Кроме этого, межклеточные взаимодействия являются одним из механизмов реализации генетической информации в процессе индивидуального развития. По существу основу деятельности иммунной, гуморальной и различных «этажей» нервной системы, составляют различные виды межклеточных взаимодействий. Целостность организма есть результат определенных информационно-материальных взаимодействий между его составными частями (элементами). Поэтому изучать целое – значит познавать не только его составные части, но и информационные и морфофизиологические взаимодействия между ними.Межклеточные контакты играют ключевую роль в формообразовании ткани или органа. По своим функциональным свойствам межклеточные контакты подразделяются:

1) Контакты простого типа:

а) простые межклеточные соединения,

б) интердигитации (пальцевые соединения).

2) Контакты сцепляющего типа:

а) десмосомы

б) адгезивный поясок.

3) Контакты запирающего типа: плотное соединение (запирающая зона)

4) Контакты коммуникационного типа:

а) щелевидные соединения (нексусы),

б) синапсы

Простое межклеточное соединение осуществляется путем сближения плазмолемм клеток до расстояния 15-20нм и взаимодействия белков плазматических мембран – кадгеринов. Имеются разнообразные семейства кадгеринов, характерные для той или иной ткани. Благодаря кадгерину клетки в процессе гистогенеза и органогенеза узнают друг друга и объединяются в единую структуру, например, эпителиальный пласт. (Раковые клетки не узнают друг друга).

Пальцевидные соединения (интердигитации) образуются за счет взаимной инвагинации (впячивания) обеих плазмолемм в начале в одном, а затем в другом. Это один из трех видов контактов между кардиомиоцитами.

Десмосома представляет небольшое округлое образование, построенное с участием плазмолемм соседних клеток. Десмосомы построены из белка десмоплакина, который образует слой на внутренней стороне каждой мембраны. К слою десмоплакина присоединяются пучки промежуточных филаментов.

Промежуточные филаменты в разных тканях представлены разными белками, например, в эпителии – кератином, в мышечной – десмином. С наружной стороны мембраны пространство между десмосомами заполнено утолщенным слоем гликокаликса. Гликокаликс десмосом пронизан склеивающим (адгезивным) белком – десмоглеином.

Адгезивный поясок встречается в однослойных эпителиях, имеет вид двойных лент. По структуре адгезивный поясок похож на десмосому, но образован другими белками.

Плотное соединение образуется с помощью интегральных адгезивных белков. В таких контактах плазмолеммы плотно прилегают друг к другу. Плотные соединения также имеют лентовидную форму. Однако ленты имеют вид ячеистой сети. Плотные контакты надежно разграничивают компартменты, находящиеся с базальной и апикальной (верхушечной) сторон однослойного эпителия. Контакты в виде плотных соединений имеются в эндотелии сосудов.

 

 

 

Рис. Схема расположения десмосом и полудесмосом в эпителиальных клетках тонкого кишечника. Сети кератиновых волокон соседних клеток связаны друг с другом через десмосомы и с базальной мембраной через полудесмосомы. (Из кн. Б. Албертс и др. «Молекулярная биология клетки», том 3.)


Поделиться с друзьями:

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.013 с.