Японский булат и колонна в Дели — КиберПедия 

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...

Японский булат и колонна в Дели

2018-01-07 193
Японский булат и колонна в Дели 0.00 из 5.00 0 оценок
Заказать работу

Японский булат обладал каким-то необыкновенным каче­ством железа, которое после целого ряда проковок при­обретало даже более высокую твердость и прочность, чем дамасская сталь. Мечи и сабли, приготовленные из этого железа, отличались удивительной вязкостью и не­обыкновенной остротой.

Уже в наше время был сделан химический анализ ста­ли, из которой изготовлено японское оружие XI—XIII ве­ков. И древнее оружие раскрыло свою тайну: в стали был найден молибден. Сегодня хорошо известно, что сталь, легированная молибденом, обладает высокой твер­достью, прочностью и вязкостью. Молибден — один из немногих легирующих элементов, добавка которого в сталь вызывает повышение ее вязкости и твердости одновременно. Все другие элементы, увеличивающие твер­дость и прочность стали, способствуют повышению ее хрупкости.

Естественно, что в сравнении с дамасскими клинками, сделанными из железа и стали, содержащей 0,6—0,8% углерода, японские мечи и сабли казались чудом. Но значит ли это, что японцы умели в то далекое время де­лать легированную сталь? Конечно, нет. Что такое леги­рованная сталь, они даже не знали, так же как и не знали, что такое молибден. Металл молибден был открыт значительно позднее, в самом конце XVIII века швед­ским химиком К. В. Шееле.

По-видимому, дело обстояло так. Японские мастера получали кричное (восстановленное) железо из железис­тых песков рассыпных месторождений. Эти руды были бедны железом, и содержание вредных примесей в полу­чаемой из них стали было довольно высокое. Но пески, кроме окислов железа, содержали легирующие элемен­ты. Они-то и обеспечивали металлу высокий уровень свойств.

Очевидно, японские мастера случайно заметили: если брать руду в каком-то определенном месте, то сталь, сде­ланная из нее, обладает особым качеством, а клинки из такой стали получаются крепкими и острыми. Они и не подозревали, что это явление наблюдалось потому, что в железных рудах, которые они использовали, содержалась окись молибдена — молибденит — и примеси редкозе­мельных металлов.

Современной наукой установлено, что получить мо­либден восстановлением его окислов углеродом при тем­пературе 1200°С, как это делалось в древности, практи­чески невозможно. В то же время совместное восстанов­ление окислов железа и молибдена углеродом идет до­статочно легко. Этим и объясняется удивительный факт получения в древности молибденовой стали.

Выплавленное из «песков» кричное железо проковы­валось в прутья и закапывалось в болотистую землю. Время от времени прутья вынимали и снова зарывали, и так на протяжении 8—10 лет. Насыщенная солями и кис­лотами болотная вода разъедала пруток и делала его похожим на кусок сыра. Мастера именно к этому и стре­мились. Но зачем это им было надо?

Дело в том, что в процессе коррозии пористого желез­ного прутка прежде всего разъедались и выпадали в виде ржавчины частички металла, содержащие вредные при­меси. Железо с растворенными в нем легирующими до­бавками дольше противостояло коррозии и поэтому сохранялось. Кроме того, полученный ноздреватый пру­ток обладал развитой поверхностью и при последующем науглероживании обеспечивал еще до ковки сложное переплетение углеродистой стали и мягкого железа. Это переплетение еще больше усложнялось в процессе после­дующей многократной деформации в горячем состоя­нии.

Раскованный в полосу сплав мастер сгибал, склады­вал вдвое, расковывал в горячем состоянии и снова скла­дывал, как слоеное тесто. В конечном счете число тончай­ших слоев в «слоеном пироге» достигало порой несколь­ких десятков тысяч. Мы уже знаем, насколько такая опе­рация упрочняет металл за счет образования колоссаль­ного количества клубков дислокации и громадного уве­личения их плотности. Последующая закалка клинков закрепляла высокие свойства, присущие молибденовой стали. Так на заре металлургии в Японии получали природно-легированную сталь, упрочненную пластической деформацией и термомеханической обработкой.

Кстати, подобных случаев в истории металлургии и техники встречается немало. Вот один из них, с которым столкнулся автор этой книги. В 1930 году в США появи­лась атмосферостойкая низкоуглеродистая строительная сталь. Она получила название «кор-тен». Незащищенная поверхность этой стали в первый период воздействия ок­ружающей среды окислялась. Однако образующиеся при этом продукты коррозии обладали высокой плотностью и очень крепко сцеплялись с основным металлом. Поэтому дальнейшая коррозия резко замедлялась. Такие свойства стали «кор-тен» обеспечивали находящиесяв ее составе медь, хром, никель и особенно фосфор, содержание кото­рого достигало 0,15%,.

При совместном взаимодействии меди и фосфора, а также хрома с кислородом, углекислым газом и парами воды образуются труднорастворимые соединения, кото­рые входят в состав окисной пленки, обволакивающей сталь. В результате периодического увлажнения и высы­хания защитные слои на ее поверхности полностью фор­мируются в течение 1,5—3 лет, и после этого разрушение металла от коррозии практически прекращается.

Сталь «кор-тен» обладала еще двумя интересными осо­бенностями. Если защитный слой повреждался, то с тече­нием времени эти зоны «самозалечивались», вновь защи­щая поверхность металла от коррозии. Другая особенность атмосферостойкой стали состояла в специфичной «естественной» окраске защитного слоя, сообщающей ме­таллу хорошие декоративные свойства. Защитный коррозийный слой, который иногда называют благородной ржавчиной, с течением времени менял свою окраску от светло-коричневого, коричневого, коричнево-фиолетового до черного и по характеру расцветки напоминал бронзу или медь.

Продолжительность службы строительных конструк­ций из высокофосфористой атмосферостойкой стали уве­личивалась в несколько раз; кроме того, они не нужда­лись в покраске. Несмотря на значительные преимущест­ва, сталь «кор-тен» получила небольшое распространение в нашей стране. Дело в том, что эта сталь обладает низкой ударной вязкостью. Ударная вязкость характеризует хрупкое разрушение металла. С понижением температу­ры она, как правило, падает и вероятность хрупкого раз­рушения возрастает.

Сталь «кор-тен» обладала удовлетворительной ударной вязкостью при температуре—20° С и не обеспечивала необходимых свойств при температуре—40° С. Соеди­ненные Штаты Америки и Западную Европу такие свой­ства устраивали. В условиях русской зимы сталь с таки­ми свойствами применять нельзя. На морозе она может растрескаться, а конструкции из нее — разрушиться. Ис­тория уральских предприятий знает такие случаи, когда стальные балки, привезенные из Западной Европы и установленные летом, зимой трескались, лопались и падали.

Поэтому перед нашими металлургами была поставле­на задача создать такую атмосферостойкую сталь, кото­рую можно было бы без риска применять в условиях Сибири и Урала. Эту задачу можно было бы решить дос­таточно просто путем увеличения в стали «кор-тен» содер­жания легирующих, например хрома. Можно было бы также повысить ударную вязкость при низких темпера­турах, подвергая сталь специальной термической обра­ботке. Но такие методы значительно увеличивают стои­мость стали, ведут к высокому расходу дефицитных ле­гирующих и поэтому мало приемлемы. Самый эффектив­ный путь — создание такой технологии производства, ко­торая обеспечивала бы необходимые свойства стали при прежнем химическом составе. Возможно ли это? Да, воз­можно, история металлургии такие случаи знает.

Железо и сталь издавна применяются в качестве, строительного материала. Фермы мостов и опоры электропередач, железнодорожные вагоны и горное оборудование, конструкции цехов и трубы тепловых электростанций, как и многие другие конструкции, выполняются из строительных марок сталей. После того как в 1778 году был сооружен первый крупный железный мост, стало ясно, что коррозия — самый опасный враг стальных кон­струкций. По данным ряда ученых, к сегодняшнему дню человек выплавил не менее 20 миллиардов тонн железа и стали, 14 миллиардов тонн этого металла «съедено» ржавчиной и рассеяно в биосфере...

В 1889 году французский инженер А. Эйфель создал проект своей знаменитой башни в Париже, которую дол­жны были соорудить из стальных ферм. Решение о ее строительстве долго не принималось, поскольку многие металлурги предсказывали, что она простоит всего 25 лет, а потом рухнет из-за коррозии стали. Эйфель же гарантировал прочность сооружения только на 40 лет. Как известно, Эйфелева башня в Париже стоит уже око­ло 100 лет, но это только потому, что фермы ее постоян­но покрыты толстым слоем краски. На покраску башни, которая производится раз в несколько лет, уходит 52 тон­ны краски. Стоимость ее давно превысила стоимость са­мого сооружения!

Покраска строительных конструкций, работающих в атмосферных условиях,— дорогое удовольствие и отвле­кает много малопроизводительного рабочего времени. В то же время известны случаи, когда железные изделия очень долго служили без покраски и не подвергались ни­какой коррозии. О стальных балках церкви в уральском городе Катав-Ивановске мы уже рассказывали. Широко известны также перила лестниц на набережной реки Фон­танки в Ленинграде. Сделанные в 1776 году из русского сварочного железа, они простояли неокрашенными под открытым небом в условиях влажного климата более 160 лет. Академик А. А. Байков, который исследовал же­лезные детали этих перил, пришел к выводу, что вероят­ной причиной высокой коррозионной стойкости металла является тонкий поверхностный слой окислов.

Аналогичное сварочное железо найдено в Свердлов­ске. Крыша одного из зданий этого города, выложенная кровельным железом еще во времена Демидова, ни разу не обновлялась, а само железо длительное время почти не подвергалось коррозии. Химическим анализом было установлено, что ленинградские перила содержат повы­шенное содержание фосфора, а свердловская кровля — фосфора и меди!

Подобное железо находили и в Западной Европе. Так, в стокгольмском соборе Сторкиркан, построенном во вто­рой половине XV века, бронзовое «семисвечье» поддер­живает железный стержень. Длина его 3,5 м, поперечное сечение у основания 50Х50 мм. Стержень изготовлен из отдельных кусков кричного железа, сваренных горячей ковкой под силикатным шлаком. Исследованные образцы железа от этого стержня характеризовались высокой концентрацией фосфора (до 0,074%). В областях с по­вышенной концентрацией фосфора обнаружена высокая твердость металла.

В этой связи уместно напомнить о знаменитой же­лезной колонне в Дели. Как известно, она создана индий­скими металлургами в 415 году нашей эры в честь побе­ды одного из императоров династии Гупта. Ее высота — 7,2 м, диаметр у основания — 420 мм и у вершины — 320 мм. Колонна стоит уже более 1500 лет, и следов кор­розии (окисления) на ней не видно. Аналогичная колон­на еще больших размеров, построенная в III веке, возвы­шается в индийском городе Дхар.

Каких только догадок ни делали металлурги, чтобы объяснить необыкновенную атмосферостойкость железа, из которого сделаны индийские колонны! Высказывалось предположение, что колонны изготовлены из цельных кусков метеоритного железа. Известно, что оно хорошо сопротивляется коррозии. Но в метеоритном железе всег­да находили никель, а в железе индийских колонн нике­ля не обнаружили. Тогда предположили, что колонна сделана из чистейшего железа, полученного на особом топливе. Действительно, содержание железа в делийской колонне — 99,72%, дхарской—гораздо меньше, но и она сотни лет не подвергается коррозии.

Высказывалось мнение, что стойкость индийских же­лезных колонн объясняется сухим и чистым воздухом местности, где они установлены. Другие исследователи утверждали, что в атмосфере когда-то было повышенное содержание аммиака, которое в субтропическом клима­те Индии позволило получить на поверхности колонны защитный слой нитридов железа. Другими словами, ко­лонны якобы азотированы самой природой.

Известны и более оригинальные точки зрения: поскольку колонны считались священными, их обливали благовонными маслами, и поэтому они не ржавели. есть даже предположение, что на колонны испокон веков залезали голые индийские ребятишки, а позднее о них«терлись» туристы. Поэтому колонны постоянно смазывались кожным жиром!

По-видимому, все гораздо проще. В индийских колоннах найдено немного меди и повышенное содержание фосфора. В железе делийской колонны его 0,114—0,180% а в дхарской еще больше — 0,280%. В обычном сварочном железе фосфора бывает не более 0,05 %, в то время как атмосферостойкая фосфористая сталь (читатель уже знает) содержит до 0,15 % фосфора. Уж очень близко содержание фосфора в индийских колоннах к содержанию его в современной атмосферостойкой стали. Не этим ли объясняется тот факт, что на поверхности колонн образовались устойчивые окисные пленки, предохраняю­щие железо от дальнейшей коррозии?

Есть данные, что верхняя, не доступная человеку часть колонны имела бронзовый оттенок, благодаря че­му некоторые наблюдатели принимали даже материал колонны за медный сплав. Другие говорят о синевато-коричневой или синевато-черной пленке окислов, покры­вающих верх колонны. Таким образом, и окисные пленки по своему внешнему виду очень напоминают защитную оболочку атмосферостойкой стали "кор-тен".

Из приведенных фактов следует: японский булат — не единственная природно-легированная сталь, изготов­лявшаяся в прошлом. Индийские и русские металлурги тоже находили железные руды, из которых получали природно-легированные чугуны и стали. Но отличаются ли механические свойства природно-легированной стали от современных сталей, легирующие элементы которых вносятся во время плавки путем добавки в жидкий ме­талл необходимого количества твердых ферросплавов? Оказывается, отличаются. Свойства природно-легированных сталей гораздо выше.

6 конце XIX столетия в России усиленными темпами начали строить железные дороги. Понадобились рельсы. Рельсы делались из бессемеровской стали, производство которой к этому времени возникло на юге страны и на Урале. Самые крупные конвертеры были установлены на Катав-Ивановском железоделательном заводе, где было организовано мощное рельсопрокатное производство.

Есть сведения, что рельсы Катав-Ивановского завода обладали необыкновенно высоким качеством. Они экс­портировались даже за границу, в частности в Англию. Причем завод гарантировал безупречную работу своей продукции в течение нескольких лет. В случае выхода рельсов из строя он давал обязательство безвозмездно заменять их и оплачивать убытки. Неизвестно ни одного случая рекламаций на катав-ивановские изделия. Уста­новлено, что высокие свойства рельсов объясняются тем, что они были сделаны из природно-легированной стали.

Катав-Ивановский чугун выплавлялся на чистых по сере и фосфору высокожелезистых бакальских рудах. К ним добавлялась бедная по железу местная руда, най­денная в небольшом количестве недалеко от города. Местная руда, кроме железа, содержала хром и марга­нец. Поэтому в Катав-Ивановске производили природно-легированный чугун. Продувая этот чугун в конвертере, получали природно-легированную хромомарганцовистую рельсовую сталь. Этим и объясняется ее высокое качест­во по сравнению с обычными сталями, в тем числе и легированными.

Но почему природно-легированные стали обладают высокими свойствами? Металлы — кристаллические ве­щества, и свойства сплавов зависят от расположения атомов легирующих элементов в их кристаллической решет­ке. При плавлении металлов и небольших температурах перегрева жидкого сплава в нем сохраняется так назы­ваемый «ближний порядок». Это значит, что атомы в микрообъемах вещества расположены один относитель­но другого определенным образом.

Современное производство легированных сталей ос­новано на расплавлении металла, удалении из него необ­ходимого количества углерода, освобождении от лишнего кислорода, вредных примесей и легировании путем добавки ферросплавов в жидкую ванну. При выплавке стали «кор-тен», например, в жидкую ванну добавляют феррохром, никель, медь, феррофосфор и другие ферро­сплавы.

Однако в связи с тем, что в слабо перегретом жидкой сплаве сохраняются устойчивые связи между существую­щими атомами, атомы легирующих элементов не могут попасть на те места, которые им предназначены природой. Такая закономерность сохраняется и после кристаллизации стали. Поэтому в стали, выплавляемой по современной технологии, как правило, не реализуется полностью весь комплекс физико-механических свойств которые могли бы обеспечить вводимые в нее легирующие элементы.

Если бы можно было сделать атмосферостойкую сталь без добавок легирующих элементов в период плавки, как это делалось в прошлом, она обладала бы более высокими свойствами. Но как это сделать, где найти материалы для выплавки такой стали? Как тут не вспомнить старых русских металлургов, ведь они находили такие материалы! А в наше время?

Оказывается, и в наше время есть такие руды в Халиловском месторождении, около города Орска. Для работы на этих рудах в городе Новотроицке был построен Орско-Халиловский металлургический комбинат. И получают на комбинате природно-легированный чугун, который содержит никель, хром и фосфор.

Получать-то получают, а переделывать в обычную сталь затрудняются. Дело в том, что в обычных сталях фосфор — вредная примесь, он делает сталь хрупкой, и его надо удалять до сотых долей процента. Удаля­ют фосфор из расплава путем его окисления и перевода образующихся окислов в шлак. Однако вместе с фосфо­ром окисляется хром, а окислы хрома, переходя в шлак, делают его вязким, неактивным. Это затрудняет плавку стали, удлиняет ее, повышает стоимость стали. А вот атмосферостойкая сталь имеет высокое содержание фос­фора, и, следовательно, фосфор из чугуна удалять прак­тически не надо. Значит, при переплаве пригодно-легированного чугуна сохранится и хром, значит, нет опасности получать вязкие хромистые шлаки. Вот и получается. что халиловский чугун самой природой создан для про­изводства природно-легированной атмосферостойкой стали.

Эксперименты на Орско-Халиловском металлургиче­ском комбинате привели к положительным результа­там — изобретению новой природно-легированной атмосферостойкой стали. Новая никельхромомедистая вы­сокофосфористая природно-легированная сталь с успехом выдержала все физические и механические испытания и обеспечила комплекс необходимых свойств при температуре — 40° С.

Интересно, что повышенное содержание фосфора и меди встречается также во многих образцах древних булатов. В Тульском музее оружия хранится кинжал. Длина его клинка 15 см, а ручки с головой быка — всего 10. Найден он на Куликовом поле; считают, что оружие изготовлено около 1380 года. Небольшие размеры дают основание предполагать, что это женское оружие. Внут­ри ручки есть пружина, с помощью которой клинок сма­зывается ядом, вытекающим из специальной железной трубки. Железо трубки сильно корродировано, в то время как лезвие клинка совершенно чистое, без каких-либо следов ржавчины. По-видимому, наши предки, сами того не подозревая, получали природно-легированную фосфо­ром и медью сталь, которая хорошо противостояла кор­розии.

Что же такое булат?

Нам уже известно, что булат — это прежде всего литая углеродистая сталь, обладающая специфическими узо­рами.

Первым подробно описал литой индийский булат, или вутц, Павел Петрович Аносов. «Булатом называ­ется,— писал П. П. Аносов,— сталь, имеющая узорчатую поверхность: на некоторых булатах узор виден не­посредственно после полировки, на других же непрежде, как поверхность подвергается действию какой-либо слабой кислоты». Легкость проявления рисунка при травлении являлась характерным признаком лито­го булата.

Кроме того, рисунок должен принадлежать всей массе булатного клинка и быть результатом естествен­ной структуры металла, а не результатом сварки кус­ков металла различной твердости, как в дамасской стали. Расположение узоров на булатном клинке отли­чалось тем, что, повторяясь по форме, каждый из них имел неповторимые штрихи. Поэтому искусственно создать булатный узор практически невозможно. Кроме того, если узор стирался с поверхности изделия, то последующей шлифовкой, полировкой и травлением его можно было очень хорошо выявить вновь. Узор сохранялся даже при перековке сабли в кортик, нож или другое изделие.

В начале прошлого столетия было достоверно уста­новлено, что булаты содержат удивительно много углерода—1,2—1,7%. В отдельных образцах булата найдено 2% углерода и даже больше. Значит, булат не обычная углеродистая сталь, а «сверхуглеродистая» Хорошо известно, что с увеличением содержания угле рода в стали ее твердость, износостойкость и прочность после закалки возрастают. Этим и объясняется высокая прочность булатных клинков. Поражает, что наряду с прочностью булат обладает высокой пластичностью вязкостью и упругостью. Булатная сабля легко сгибалась на 90—120°, не ломаясь. Есть сведения, будто настоящий булатный клинок носили вместо пояса «обматывая» им талию.

Как мы уже говорили, индийский булат поставлялся на рынки Персии и Сирии в виде разрубленной пополам лепешки литой стали — вутца. Вутц имел диаметр при­мерно 12,5 см, толщину около 1 см и массу примерно 1 кг. Характерно, что вутц также имел естественный рисунок. Сохранились воспоминания путешественников по Индии, которые видели, как плавят булатную сталь. Они утверждают, что булатные слитки имели своеоб­разные узоры, не похожие на рисунок на готовых клин­ках. Очевидно, вутц рубили пополам для того, чтобы покупатель мог рассмотреть строение металла. Чтобы из вутца сделать клинок, необходимо было его правиль­но проковать, термически обработать и окончательно отделать. Таким образом, качество булатного клинка определялось не только материалом, но и способами его изготовления, термообработки и отделки.

Арабский ученый XII века Едриза сообщает, что в его время индийцы еще славились производством железа, индийской сталью и выковкой знаменитых мечей. В Дамаске из этой стали изготовляли клинки, славу о которых крестоносцы разнесли по всей Европе. К сожалению, в Древней Индии так тщательно прятали секре­ты выплавки вутца, что в конце концов потеряли их совсем. Уже в XII веке табан, например, не могли делать ни в Индии, ни в Сирии, ни в Персии.

После того как Тимур покорил Сирию и вывез отту­да всех мастеров, искусство изготовления оружия из литого булата переместилось в Самарканд; однако вскоре оно везде пришло в упадок. Потомки вывезен­ных мастеров, рассеявшись по всему Востоку, окончательно потеряли способы изготовления булатного ору­жия. В XVI—XVIII веках мало кто в мире знал секрет производства литого булата и изготовления из него холодного оружия. Возможно, что на родине булата в Индии редкие образцы булата делали вплоть до XVIII века. Его производство окончательно исчезло после нашествия европейцев, которые завезли в страну сов­ременные способы производства стали.

Ко времени, когда были установлены научные мето­ды определения структуры, фазового состава и механи­ческих свойств металла, в распоряжении металлургов оказались лишь музейные экспонаты булатных изделий. Некоторые из них с годами потеряли свои свойства практически полностью. Другие сохранились относи­тельно хорошо, но владельцы редко соглашаются жертвовать своими сокровищами. Все же некоторые металловедческие исследования булата проделаны бы­ли, и мы об этом еще расскажем.

Интересно, что время оказалось самым надежным индикатором для определения настоящей булатной стали. Известно — неоднородный металл больше под­вержен коррозии, чем однородный. Полосы дамасской стали ржавели довольно быстро.

До наших дней не дошел ни один меч с полностью сохранившимся цветным узором и первоначальной полировкой. Лучший образец сварочного многослойно­го, булата — дротик из городского исторического музея в Дюссельдорфе — имеет первоначальную политуру, но цвет узора сохранил лишь частично. Литой булат па сравнению со сварочным гораздо более стоек против коррозии, поэтому его образцы и сохранились лучше.

Таким образом, на вопрос, что такое булат, можно ответить пока только так: это литая углеродистая сталь, обладающая естественным узором и необыкновенна вы­сокими свойствами.

Какова природа естественного узора на изделиях из литой стали? Почему его характер определял свой­ства этой стали? Как в древности умудрялись ковать «сверхуглеродистую» сталь, близкую по составу к чу­гуну? Чем объясняется необыкновенная острота лезвий булатных клинков? Почему методами современной металлургии невозможно либо нецелесообразно вы­плавлять сталь, подобную древнему булату?

Эти вопросы давно волнуют не только металлургов. Автор надеется, что читатель в какой-то мере найдет на них ответы в следующих главах книги.


 

ГЛАВА ВТОРАЯ

РУССКИЙ БУЛАТ

Время подлинных свершений не относится ни к прошлому, ни к настоящему, ни к будущему.

Г. Д. Тори

Харалужные мечи

Холодное оружие до конца XIV века было основным вооружением русского войска. О высоком качестве булатных клинков на Руси знали с незапамятных времен. Русский былинный эпос часто воспевал харалужные мечи. Харалужная — цветастая — так на Руси до сере­дины XV века называли булатную сталь. «...Храбрая сердца в жестоцем харалузе скована, а в булати закалена», — говорится в «Слове о полку Игореве». Известный русский путешественник Афанасий Никитин, посетивший Персию, Индию и другие страны Востока в. 1466—1472 годах, в своей книге «Хождение за три моря» употребляет уже только слово «булат» при описании военных доспехов, сделанных из восточной стали.

Советские археологи установили, что в V—VIII веках древние русские кузнецы умели делать железные ножи со стальными лезвиями. В IX—Х веках в России достигла высокого уровня техника производства сварочного булата. В трактате багдадского философа Аль-Кинди «О различных видах мечей и железе хороших

клинков и о местностях, по которым они называются», написанном в первой половине IX века, указывается на то, что франкские и слиманские мечи изготовляются из дамасской стали. Современник Аль-Кинди арабский ученый Ибн-Руста называет народ, владевший слиманскими мечами, «русами»; Аль-Бируни сообщает: «Русы выделывали свои мечи из шабуркана (твердой стали — Авт.), а долы посредине их из нармохана (мягкой стали — Авт.), чтобы придать им прочносгь при ударе, предотвратить их хрупкость». Аль-Бируни сообщает также, что на Руси для изготовления долов применяли плетение из длинных проволок, приготовленных из разных сортов железа, твердого и мягкого.

Современный исследователь истории производства холодного оружия в России Б. А. Колчин указывает, что все известные нам древнерусские мечи (их найдено более 75) имеют конструкцию клинка, подобную описанной Аль-Бируни. На основании обнаруженных структурных схем металла древнерусских мечей была реконструирована технология их изготовления.

Основа клинка делалась из железа или сваривалась из трех полос стали и железа Когда ее сваривали только из стали, то брали малоуглеродистый металл. Довольно широко применялась и узорчатая сварка. В этом случае основа клинка изготавливалась из средней железной и двух крайних стальных специально сваренных полос. Последние состояли из нескольких прутьев (слоев) с разным содержанием углерода, много раз перекрученных и раскованных в полосу. К предварительно сваренному и подготовленному бруску основы клинка в торец наваривали стальные полосы — будущие лезвия. После сварки клинок выковывали таким образом, чтобы стальные полосы вышли на лезвия. Отковав клинок заданного размера, вытягивали черенок рукоятки, после чего выстругивали долы (прорезы). Затем клинок полировали и травили. Многие русские клинки, подобно древнеримскому сварочному булату, имели рисунок в елочку.

В работе советского исследователя А. Н. Кирпичникова есть сведения о мечах из сварочного булата, найденных на территории древнерусских селений Боре, Новоселках, Михайловском и других. Меч, найденный в Михайловском, хранится в Государственном историческом музее в Москве. Полоса дамасской стали наварена

на нем поверх дола и состоит из трех прутиков — слоев. Средний из них имеет крупный узор, напоминающий узор литого булата.

Не удивительно, что русские мечи с «редкостными» узорами пользовались большим спросом на внешних рынках: в Византии, Средней Азии и других странах. Арабский писатель Ибн-Хордадбех в середине IX века писал: «Что же касается купцов русских—они же суть племя из славян,— то они вывозят меха выдры, меха лисиц и мечи из дальнейших концов Славонии к Румейскому (Черному) морю». Сохранилась переписка между Иваном II и крымским ханом Менглн-Гиреем. Хан, который имел дамасское и багдадское оружие, выпрашивал русские доспехи: «Сего году ординских татар кони потоптали есмя, мелкой доспех истеряли есмя. У тебя, у брата своего, мелкого доспеху просити есми».

Русское оружие славилось не только качеством стали, но и ее термообработкой. Закаленную сталь на Руси называли «трьпенный оцел» («стойкая сталь»). Наваренные «оцелом» топоры находили в курганах, относящихся к XI веку. «Каленные» стрелы и сабли часто упоминаются в былинах. Известна древняя поговорка:

«Пещь искушает оцел во калении». Рогатина тверского князя Бориса Александровича имела рожну из закаленного булата.

В России умели делать сварочный булат вплоть до конца XIX века. В Государственной оружейной палате в Москве можно увидеть саблю царя Михаила Федоровича, изготовленную мастером Нилом Просвитом в 1618 году. Полоса у этой сабли булатная с прорезами (долами), украшена насечкой с надписью о времени изготовления. Сохранились сведения, что, кроме Нила Просвита, клинки из сварочного булата делали московские мастера Дмитрий Коновалов, Богдан Ипатьев и другие. Эти сведения в настоящее время пополняются в связи с тем, что в последние годы более успешно идет расшифровка надписей на проржавевшем древнем оружии.

Рижский историк-металловед А. К. Антейн сравнительно недавно приготовил очень эффективный реактив для расчистки проржавевших лезвий древних мечей. На лезвиях древних мечей, обработанных «бальзамом Антейна», выявляют очень тонкие надписи, которые обычно располагались в верхней трети клинка. Они, как правило, инкрустированы в горячем состоянии обычной или перекрученной железной либо стальной проволокой. Так, например, в Киевском историческом • музее хранится меч с красивой рукояткой с рисунком в виде перевитых друг с другом чудовищ. Меч находился в музее более 50 лет и его безоговорочно считали нерусским изделием. К изумлению историков, после обработки «бальзамом Антейна» на мече проявилась русская надпись «Коваль Людоша». Как было установлено, надпись сделана русскими прописными буквами, характерными для первой половины XI века. По сей день специалисты ищут и опознают образцы русских клинков от Сибири до Франции!

Приведенные факты убедительно подтверждают, что на Руси тысячу лет назад существовали специализированные мастерские по производству оружия из сварочного булата. Оружие обладало очень высоким качеством и имело тонкую художественную отделку. Во второй половине XVII века существовала мастерская по изготовлению оружия из булата в Астрахани. Дело в том, что с 1556 по 1649 год английские купцы пользовались правом на транзитную торговлю со странами Востока по Волжскому пути. Очевидно, они и завезли в Астрахань булатную сталь и способы изготовления из нее оружия. Известно, что царь Алексей Михайлович, большой любитель дамасских клинков, посылал туда трех учеников «для учения булатных сабельных полос». Судьба учеников неизвестна, но сабли из сварочного булата, относящиеся к этому времени, хранятся в московской Оружейной палате.

В XVIII и XIX веках изделия из сварочного булата умели делать и в Златоусте. В Златоустовском музее хранятся стальной столик и несколько сабель, имеющих красивые узоры, характерные для сварочного булата. Наконец, сварочный булат в это же время хорошо делали тульские оружейники. В Туле сварочный булат яазывали ккрасным железом». Получали «краевое железо» путем сварки железных и стальных полос в самых разнообразных сочетаниях. Тульских дробовиков и другого оружия из «красного железа» сохранилось довольно много. Есть оно в Государственном историческом музее, Государственном Эрмитаже, Тульском. Смоленском и других музеях. Так что сварочный булат на Руси знали очень хорошо испокон веков. Был известен у нас и настоящий, литой булат. И некоторые сведения об этом история сохранила.

К XIX веку за словом «булат» в России укрепляется понятие высококачественной литой стали с естественным узором после ковки. Как верно заметил П. П. Аносов, «под словом булат каждый россиянин привык понимать металл более твердый и острый, нежели обыкновенная сталь».

Как уже отмечалось, клинки из восточной стали попадали в Россию из Индии и Дамаска через Персию Грузию, Астрахань. Попадало на Русь также египетское и турецкое оружие из булата. Сохранилась булатная сабля второй четверти XVI века, принадлежавшая Федору Михайловичу Мстиславскому. В описи 1884 года о ней сказано: «Полоса булатная по турецкому образцу» Клинок сабли широкий с обухом и незначительны» расширением книзу — елманью. От елмани к концу клинок обоюдоострый. На клинке в круглом клейме исполнена золотом арабская надпись: «Изделие раба всевышнего бога Касима из Каира». В 1830 году из Троице-Сергиевой лавры в Загорске в Оружейную палату поступили подобного типа сабли, принадлежавшие Кузьме Захаровичу Минину и Дмитрию Михайловичу Пожарскомую. Булатные сабли упоминаются в числе подарков царю Федору Ивановичу и Борису Годунову от Кызылбашского (персидского) шаха Абасса и от Гилянского царя Ахмета. Среди подарков значатся: сабель булатных — пять; полос сабельных — две; щит — один. Начавшееся затем на Руси «смутное время» прервало отношения между Россией и Персией. В 1613 году в Москву прибывает новое посольство из Персии. Привезенные им подарки царю Михаилу Федоровичу состоят исключительно из булатного оружия.

В Государственном Эрмитаже хранится булатная сабля, принадлежавшая сподвижнику Петра I генерал-фельдмаршалу Б. П. Шереметьеву. На поверхности клинка типичный булатный узор. Это не парадное оружие, а боевой клинок. От удара он был сломан у эфеса и наварен железом Из этого видно, что клинком дорожили. Профессор И. С. Гаев, тщательно исследовавший шереметьевский булат уже в наши дни, отмечает, что у режущей кромки клинка после травления была выявлена тонковолокнистая микроструктура, являющаяся результатом ковки в одном направлении. В середине же выявлен коленчато-ониксовидный рисунок, полученный в результате ковки в особых условиях, с деформацией в различных направлениях. Остальная часть поверхности клинка имеет менее четко выраженный узор спутанного характера. На поперечном изломе структура металла мелкозернистая. Булатные сабли, подобные сабле Шереметьева, имели, очевидно, очень высокие свойства.

Могли ли сабли из настоящего булата делать в России? Очевидно, выковать булатную саблю из вутца русские кузнецы умели, но получить булатную сталь до конца XVIII века в России, как и в Западной Европе, было вряд ли возможно. И вот почему.

Мы теперь уже определенно знаем, что булатная сталь — прежде всего литая сталь. А из сообщений Аль-Бируни и исследования археологических объектов следует, что вплоть до XVIII века в России, так же как и в Европе, литой стали не знали и делать ее не могли. Возникает вопрос: а как же тогда делали железо и сталь?

Здесь есть смысл слегка углубиться в историю развития металлургии. Это поможет лучше разобраться в тех исторических условиях, которые сложились, перед тем как П. П. Аносов впервые сумел выплавить русский булат.

Век железа

В отличие от серебра, золота, меди и других металлов железо редко встречается в природе в чистом виде, поэтому оно было освоено чел


Поделиться с друзьями:

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.075 с.