Формула (26) является основной рабочей формулой для вычисления напряжений в толще грунтового основания от действия равномерно распределенных давлений по прямоугольной и полосовой площадям. — КиберПедия 

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Формула (26) является основной рабочей формулой для вычисления напряжений в толще грунтового основания от действия равномерно распределенных давлений по прямоугольной и полосовой площадям.

2018-01-07 196
Формула (26) является основной рабочей формулой для вычисления напряжений в толще грунтового основания от действия равномерно распределенных давлений по прямоугольной и полосовой площадям. 0.00 из 5.00 0 оценок
Заказать работу

Выражениями (24) и (25) пользуются в том случае, если размер z превышает данные таблицы 17.

Нормальные вертикальные напряжения на глубине z от прямоугольной площади загружения по вертикали, проходящей через угловую точку площади, например, точку С (рисунок 9), обозначаются szp , c и определяются по формуле

szp , c = 0,25× a×p, (27)

где a - коэффициент, принимаемый по таблице 17 в зависимости от соотношения сторон прямоугольной площади h и относительной глубины, равной x = z / b.

Нормальные вертикальные напряжения, получаемые по формулам (23)-(27) являются сжимающими напряжениями. В механике грунтов и при проектировании оснований фундаментов (но не самих конструкций фундаментов) нормальные вертикальные сжимающие напряжения считаются положительными.

 

Метод угловых точек

 

Формула (27) используется для определения вертикальных нормальных напряжений s в любой точке грунтового массива от действия равномерно распределенного давления приложенного по прямоугольной площади.

Кроме этого, если произвольную площадь загружения, например, таврового вида, можно разбить на отдельные прямоугольные площади, то по формуле (27) возможно определить вертикальные нормальные напряжения s в любой точке грунтового массива и для такой произвольной площади загружения.

Рассмотрим в качестве примера определение вертикальных нормальных напряжений s в точке М от равномерно распределенного давления по прямоугольной площади (рисунок 10).

Прямоугольную площадь abcd разбиваем на четыре прямоугольные площади так, чтобы точка М была угловой для каждой из них. Тогда вертикальные нормальные напряжения s в точке М можно найти суммированием напряжений под угловыми точками четырех площадей загружения

szp = szp,с I + szp,с II + szp,с III + szp,с IV = = 0,25(a I+ a II+ a III+ a IV) p, (27)

где a I, a II, a III, a IV– коэффициенты, принимаемые по таблице 17 в зависимости от отношения сторон площадей загружения I, II, III, IV и отношения z (глубины расположения точки М) к ширине каждой из этих площадей.

Представленный способ вычисления напряжений называется методом угловых точек.

Следует отметить, что результат вычислений напряжений по методу угловых точек должен быть положительным по знаку. Это следует из основной формулы (23) вычисления напряжений sz от действия сосредоточенной силы. Конечный результат вычисления напряжений от давлений, приложенных по произвольной площади, определяется суммированием положительных напряжений от сосредоточенных сил, приложенных к элементарным площадкам, на которые разбита исходная площадь.

Пример 1.
 
 

Определить методом угловых точек напряжение в точке М, расположенной в толще грунта на глубине 2 м, от давления р = 200 кПа (рисунок 11).

Решение. Заменяем заданную прямоугольную площадь четырьмя прямоугольными площадями I, II, III, IV (рисунок 11). По I и IV площадям напряжения вычисляем с положительным знаком, по II и III – с отрицательным.

Напряжение в точке М вычисляем по формуле (27)

Прямоугольная площадь I:

b = l = 4,8 м, h = 4,8 /4,8 = 1, x = z / b = 2 / 4,8 = 0,42, по таблице 17 находим a I = 0,952,

0,952·200 / 4 = 47,6 кПа.

Прямоугольная площадь II:

b = 2 м, l = 4,8 м, h = 4,8 /2 = 2,4, x = z / b = 2 / 2 = 1, по таблице 17 находим a II = 0,808

-0,808·200 / 4 = -40,4 кПа.

Прямоугольная площадь III:

b = 2 м, l = 4,8 м, h = 4,8 /2 = 2,4, x = z / b = 2 / 2 = 1, по таблице 17 находим a III = 0,808

-0,808·200 / 4 = -40,4 кПа.

Прямоугольная площадь IV:

b = l = 2 м, h = 2 /2 = 1, x = z / b = 2 / 2 = 1,

по таблице 17 находим a IV = 0,703

0,703·200 / 4 = 35,2 кПа.

В итоге получаем 47,6 - 40,4 - 40,4 + 35,2 = 2 кПа.

 


Поделиться с друзьями:

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.009 с.