Представление данных в памяти персонального компьютера (числа, символы, графика, звук). — КиберПедия 

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Представление данных в памяти персонального компьютера (числа, символы, графика, звук).

2017-12-22 921
Представление данных в памяти персонального компьютера (числа, символы, графика, звук). 0.00 из 5.00 0 оценок
Заказать работу

Билет№16

Представление данных в памяти персонального компьютера (числа, символы, графика, звук).

Кодирование информации

Каждый народ имеет свой язык, состоящий из набора символов (букв): русский, английский, японский и многие другие. Вы уже познакомились с языком математики, физики, химии.

Представление информации с помощью какого-либо языка часто называют кодированием.

Код — набор символов (условных обозначений) дли представления информации. Кодирование — процесс представления информации в виде кода.

Водитель передает сигнал с помощью гудка или миганием фар. Кодом является наличие или отсутствие гудка, а в случае световой сигнализации — мигание фар или его отсутствие.

Вы встречаетесь с кодированием информации при переходе дороги по сигналам светофора. Код определяют цвета светофора — красный, желтый, зеленый.

В основу естественного языка, на котором общаются люди, тоже положен код. Только в этом случае он называется алфавитом. При разговоре этот код передается звуками, при письме — буквами. Одну и ту же информацию можно представить с помощью различных кодов. Например, запись разговора можно зафиксировать посредством русских букв или специальных стенографических значков.

По мере развития техники появлялись разные способы кодирования информации. Во второй половине XIX века американский изобретатель Сэмюэль Морзе изобрел удивительный код, который служит человечеству до сих пор. Информация кодируется тремя «буквами»: длинный сигнал (тире), короткий сигнал (точка) и отсутствие сигнала (пауза) для разделения букв. Таким образом, кодирование сводится к использованию набора символов, расположенных в строго определенном порядке.

Немецкий ученый Готфрид Вильгельм Лейбниц предложил еще в XVII веке уникальную и простую систему представления чисел. «Вычисление с помощью двоек... является для науки основным и порождает новые открытия... при сведении чисел к простейшим началам, каковы 0 и 1, везде появляется чудесный порядок».

Сегодня такой способ представления информации с помощью языка, содержащего всего два символа алфавита — 0 и 1, широко используется в технических устройствах, в том числе и в компьютере. Эти два символа 0 и 1 принято называть двоичными цифрами или битами (от англ. bit — Binary Digit - двоичный знак).

Инженеров такой способ кодирования привлек простотой технической реализации — есть сигнал или нет сигнала. С помощью этих двух цифр можно закодировать любое сообщение.

Более крупной единицей измерения объема информации принято считать 1 байт, который состоит из 8 бит.

Принято также использовать и более крупные единицы измерения объема информации. Число 1024 (210) является множителем при переходе к более высокой единице измерения.

Килобит Кбит Кбит = 1024 бит ≈1000 бит
Мегабит Мбит 1 Мбит = 1024 Кбит ≈ 1 000 000 бит
Гигабит Гбит Гбит = 1024 Мбит ≈ 1 000 000 000 бит
Килобайт Кбайт (Кб) 1 Кбайт = 1024 байт ≈ 1000 байт
Мегабайт Мбайт (Мб) 1 Мбайт = 1024 Кбайт ≈ 1 000 000 байт
Гигабайт Гбайт (Гб) 1 Гбайт = 1024 Мбайт ≈ 1 000 000 000 байт

Кодирование чисел

Система счисления — совокупность приемов и правил записи чисел с помощью определенного набора символов.

Для записи чисел могут использоваться не только цифры, но и буквы (например, запись римских цифр — XXI). Одно и то же число может быть по-разному представлено в различных системах счисления.

В зависимости от способа изображения чисел системы счисления делятся на позиционные и непозиционные.

В позиционной системе счисления количественное значение каждой цифры числа зависит от того, в каком месте (позиции или разряде) записана та или иная цифра этого числа. Например, меняя позицию цифры 2 в десятичной системе счисления, можно записать разные по величине десятичные числа, например 2; 20; 2000; 0,02 и т. д.

В непозиционной системе счисления цифры не изменяют своего количественного значения при изменении их расположения (позиции) в числе. Примером непозиционной системы может служить римская система, в которой независимо от местоположения одинаковый символ имеет неизменное значение (например, символ X в числе XXV).

Количество различных символов, используемых для изображения числа в позиционной системе счисления, называется основанием системы счисления.

В компьютере наиболее подходящей и надежной оказалась двоичная система счисления, в которой для представления чисел используются последовательности цифр 0 и 1.

Кроме того, для работы с памятью компьютера оказалось удобным использовать представление информации с помощью еще двух систем счисления:

  • восьмеричной (любое число представляется с помощью восьми цифр — 0, 1, 2... 7);
  • шестнадцатеричной (используемые символы-цифры — 0, 1, 2... 9 и буквы — А, В, С, D, Е, F, заменяющие числа 10, 11, 12, 13, 14, 15 соответственно).

При использовании в тексте это число потребует для своего представления 2 байта, поскольку каждая цифра будет представлена своим кодом в соответствии с таблицей ASCII. В двоичной системе - 00110100 00110101.

Билет №17

Билет №18

Аппаратные средства

Монитор.

Монитор является универсальным устройством вывода информации и подключается к видеокарте, установленной в компьютере.
Изображение в компьютерном формате (в виде последовательностей нулей и единиц) хранится в видеопамяти, размещенной на видеокарте. Изображение на экране монитора формируется путем считывания содержимого видеопамяти и отображения его на экран.
Частота считывания изображения влияет на стабильность изображения на экране. В современных мониторах обновление изображения происходит обычно с частотой 75 и более раз в секунду, что обеспечивает комфортность восприятия изображения пользователем компьютера (человек не замечает мерцание изображения). Для сравнения можно напомнить, что частота смены кадров в кино составляет 24 кадра в секунду.

ЖК-мониторы сделаны из вещества, которое находится в жидком состоянии, но при этом обладает некоторыми свойствами, присущими кристаллическим телам. Фактически это жидкости, обладающие анизотропией свойств (в частности, оптических), связанных с упорядоченностью в ориентации молекул. Молекулы жидких кристаллов под воздействием электрического напряжения могут изменять свою ориентацию и вследствие этого изменять свойства светового луча, проходящего сквозь них.

Принтеры.

Принтеры предназначены для вывода на бумагу (создания «твердой копии») числовой, текстовой и графической информации. По своему принципу действия принтеры делятся на матричные, струйные и лазерные.


Матричные принтеры — это принтеры ударного действия. Печатающая головка матричного принтера состоит из вертикального столбца маленьких стержней (обычно 9 или 24), которые под воздействием магнитного поля «выталкиваются» из головки и ударяют по бумаге (через красящую ленту). Перемещаясь, печатающая головка оставляет на бумаге строку символов.

Недостатки матричных принтеров состоят в том, что они печатают медленно, производят много шума и качество печати оставляет желать лучшего (соответствует примерно качеству пишущей машинки).

Струйные принтеры

В последние годы широкое распространение получили черно-белые и цветные струйные принтеры. В них используется чернильная печатающая головка, которая под давлением выбрасывает чернила из ряда мельчайших отверстий на бумагу. Перемещаясь вдоль бумаги, печатающая головка оставляет строку символов или полоску изображения.

 

Струйные принтеры могут печатать достаточно быстро (до нескольких страниц в минуту) и производят мало шума. Качество печати (в том числе и цветной) определяется разрешающей способностью струйных принтеров, которая может достигать фотографического качества 2400 dpi. Это означает, что полоска изображения по горизонтали длиной в 1 дюйм формируется из 2400 точек (чернильных капель).

Лазерные принтеры обеспечивают практически бесшумную печать. Высокую скорость печати (до 30 страниц в минуту) лазерные принтеры достигают за счет постраничной печати, при которой страница печатается сразу целиком.

Плоттер.

Для вывода сложных и широкоформатных графических объектов (плакатов, чертежей, электрических и электронных схем и пр.) используются специальные устройства вывода — плоттеры.

Принцип действия плоттера такой же, как и струйного принтера.

Устройства ввода информации

Сенсорный экран

Сенсорный, или тактильный, экран представляет собой поверхность, которая покрыта специальным слоем. Прикосновение к определенному месту экрана обеспечивает выбор задания, которое должно быть выполнено компьютером, или команды в экранном меню.

Сенсорный экран позволяет также перемещать объекты. Он удобен в использовании, особенно когда необходим быстрый доступ к информации. Такие устройства ввода можно увидеть в банковских компьютерах, аэропортах, а также в военной сфере и промышленности.

Световое перо

Световое перо похоже на обычный карандаш, на кончике которого имеется специальное устройство — светочувствительный элемент.

Световое перо используется для ввода информации в самых маленьких персональных компьютерах — в карманных микрокомпьютерах. Оно также применяется в различных системах проектирования и дизайна.

Графический планшет, или дигитайзер

Графический планшет, или дигитайзер, используется для создания либо копирования рисунков или фотографий. Он позволяет создавать рисунки так же, как на листе бумаги. Изображение преобразуется в цифровую форму, отсюда название устройства (от англ. digit — цифра).

Сканер

Большое распространение в наше время прибрели устройства сканирования изображений, таких как тексты или рисунки. Термин «сканирование» происходит от английского глагола to scan, что означает «пристально всматриваться».

Сканер предназначен для ввода в компьютер графической или текстовой информации с листа бумаги, со страницы журнала или книги. Для работы сканера необходимо программное обеспечение, которое создает и сохраняет в памяти электронную копию изображения. Все разнообразие подобных программ можно подразделить на два класса — для работы с графическим изображением и для распознавания текста.

Цифровые камеры и ТВ-тюнеры

Последние годы все большее распространение получают цифровые камеры (видеокамеры и фотоаппараты). Цифровые камеры позволяют получать видеоизображение и фотоснимки непосредственно в цифровом (компьютерном) формате.

Цифровые видеокамеры могут быть подключены к компьютеру, что позволяет сохранять видеозаписи в компьютерном формате.

Программные средства

Для обработки изображений на компьютере используются специальные программы — графические редакторы. Графический редактор — это программа создания, редактирования и просмотра графических изображений. Графические редакторы можно разделить на две категории: растровые и векторные.

Растровые графические редакторы. Растровые графические редакторы являются наилучшим средством обработки фотографий и рисунков, поскольку растровые изображения обеспечивают высокую точность передачи градаций цветов и полутонов. Среди растровых графических редакторов есть простые, например стандартное приложение Paint, и мощные профессиональные графические системы, например Adobe Photoshop.

Растровое изображение хранится с помощью точек различного цвета (пикселей), которые образуют строки и столбцы. Любой пиксель имеет фиксированное положение и цвет. Хранение каждого пикселя требует некоторого количества бит информации, которое зависит от количества цветов в изображении.

Качество растрового изображения определяется размером изображения (числом пикселей по горизонтали и вертикали) и количества цветов, которые могут принимать пиксели.

Растровые изображения очень чувствительны к масштабированию (увеличению или уменьшению). Когда растровое изображение уменьшается, несколько соседних точек превращаются в одну, поэтому теряется разборчивость мелких деталей изображения. При укрупнении изображения увеличивается размер каждой точки и появляется ступенчатый эффект, который виден невооруженным глазом.

Векторные графические редакторы. Векторные графические изображения являются оптимальным средством для хранения высокоточных графических объектов (чертежи, схемы и т. д.). для которых имеет значение наличие четких и ясных контуров. С векторной графикой вы сталкиваетесь, когда работаете с системами компьютерного черчения и автоматизированного проектирования, с программами обработки трехмерной графики.

К векторным графическим редакторам относятся графический редактор, встроенный в текстовый редактор Word. Среди профессиональных векторных графических систем наиболее распространены CorelDRAW и Adobe Illustrator.

Векторные изображения формируются из объектов (точка, линия, окружность и т. д.), которые хранятся в памяти компьютера в виде графических примитивов и описывающих их математических формул.

Например, графический примитив точка задается своими координатами (X, Y), линия — координатами начала (XI, У1) и конца (Х2, Y2), окружность — координатами центра (X, Y) и радиусом (К), прямоугольник — величиной сторон и координатами левого верхнего угла (Xl, Y1) и правого нижнего угла (Х2, Y2) и т. д. Для каждого примитива назначается также цвет.

Достоинством векторной графики является то, что файлы, хранящие векторные графические изображения, имеют сравнительно небольшой объем. Важно также, что векторные графические изображения могут быть увеличены или уменьшены без потери качества.

Панели инструментов графических редакторов. Графические редакторы имеют набор инструментов для создания или рисования простейших графических объектов: прямой линии, кривой, прямоугольника, эллипса, многоугольника и т. д. После выбора объекта на панели инструментов его можно нарисовать в любом месте окна редактора.

Выделяющие инструменты. В графических редакторах над элементами изображения возможны различные операции: копирование, перемещение, удаление, поворот, изменение размеров и т. д. Чтобы выполнить какую-либо операцию над объектом, его сначала необходимо выделить.

Для выделения объектов в растровом графическом редакторе обычно имеются два инструмента: выделение прямоугольной области и выделение произвольной области. Процедура выделения аналогична процедуре рисования.

Выделение объектов в векторном редакторе осуществляется с помощью инструмента выделение объекта (на панели инструментов изображается стрелкой). Для выделения объекта достаточно выбрать инструмент выделения и щелкнуть по любому объекту на рисунке.


Инструменты редактирования рисунка позволяют вносить в рисунок изменения: стирать его части, изменять цвета и т. д. Для стирания изображения в растровых графических редакторах используется инструмент Ластик, который убирает фрагменты изображения (пиксели), при этом размер Ластика можно менять.

В векторных редакторах редактирование изображения возможно только путем удаления объектов, входящих в изображение, целиком. Для этого сначала необходимо выделить объект, а затем выполнить операцию Вырезать.

Операцию изменения цвета можно осуществить с помощью меню Палитра, содержащего набор цветов, используемых при создании или рисовании объектов.

Текстовые инструменты позволяют добавлять в рисунок текст и форматировать его.

В растровых редакторах инструментом Надпись (буква А на панели инструментов) создаются текстовые области на рисунках. Установив курсор в любом месте текстовой области, можно ввести текст. Форматирование текста производится с помощью панели Атрибуты текста.

В векторных редакторах тоже можно создавать текстовые области для ввода и форматирования текста. Кроме того, надписи к рисункам вводятся посредством так называемых выносок различных форм.

Масштабирующие инструменты в растровых графических редакторах дают возможность увеличивать или уменьшать масштаб представления объекта на экране, не влияя при этом на его реальные размеры. Обычно такой инструмент называется Лупа.
В векторных графических редакторах легко изменять реальные размеры объекта с помощью мыши.

Форматы графических файлов

Форматы графических файлов определяют способ хранения информации в файле (растровый или векторный), а также форму хранения информации (используемый алгоритм сжатия).

Сжатие применяется для растровых графических файлов, так как они имеют обычно достаточно большой объем. Сжатие графических файлов отличается от их архивации с помощью программ архиваторов. тем, что алгоритм сжатия включается в формат графического файла.

Некоторые форматы графических файлов являются универсальными, так как могут быть обработаны большинством графических редакторов. Некоторые программы обработки изображений используют оригинальные форматы, которые распознают только самой создающей программой.

Рассмотрим некоторые форматы графических файлов:

BMP – универсальный формат растровой графики в windows.

GIF – формат растровых графических файлов для различных ОС. Используется для размещения графических изображений в Интернете.

JPEG - формат растровых графических файлов, который использует эффективных алгоритм сжатия (с потерями). Используется для размещения графических изображений в Интернете.

WMF – универсальных формат векторных графических файлов для windows-приложений.

CDR – оригинальный формат векторных графических файлов, используется в системе обработки изображений CorelDraw.

Билет№16

Представление данных в памяти персонального компьютера (числа, символы, графика, звук).

Кодирование информации

Каждый народ имеет свой язык, состоящий из набора символов (букв): русский, английский, японский и многие другие. Вы уже познакомились с языком математики, физики, химии.

Представление информации с помощью какого-либо языка часто называют кодированием.

Код — набор символов (условных обозначений) дли представления информации. Кодирование — процесс представления информации в виде кода.

Водитель передает сигнал с помощью гудка или миганием фар. Кодом является наличие или отсутствие гудка, а в случае световой сигнализации — мигание фар или его отсутствие.

Вы встречаетесь с кодированием информации при переходе дороги по сигналам светофора. Код определяют цвета светофора — красный, желтый, зеленый.

В основу естественного языка, на котором общаются люди, тоже положен код. Только в этом случае он называется алфавитом. При разговоре этот код передается звуками, при письме — буквами. Одну и ту же информацию можно представить с помощью различных кодов. Например, запись разговора можно зафиксировать посредством русских букв или специальных стенографических значков.

По мере развития техники появлялись разные способы кодирования информации. Во второй половине XIX века американский изобретатель Сэмюэль Морзе изобрел удивительный код, который служит человечеству до сих пор. Информация кодируется тремя «буквами»: длинный сигнал (тире), короткий сигнал (точка) и отсутствие сигнала (пауза) для разделения букв. Таким образом, кодирование сводится к использованию набора символов, расположенных в строго определенном порядке.

Немецкий ученый Готфрид Вильгельм Лейбниц предложил еще в XVII веке уникальную и простую систему представления чисел. «Вычисление с помощью двоек... является для науки основным и порождает новые открытия... при сведении чисел к простейшим началам, каковы 0 и 1, везде появляется чудесный порядок».

Сегодня такой способ представления информации с помощью языка, содержащего всего два символа алфавита — 0 и 1, широко используется в технических устройствах, в том числе и в компьютере. Эти два символа 0 и 1 принято называть двоичными цифрами или битами (от англ. bit — Binary Digit - двоичный знак).

Инженеров такой способ кодирования привлек простотой технической реализации — есть сигнал или нет сигнала. С помощью этих двух цифр можно закодировать любое сообщение.

Более крупной единицей измерения объема информации принято считать 1 байт, который состоит из 8 бит.

Принято также использовать и более крупные единицы измерения объема информации. Число 1024 (210) является множителем при переходе к более высокой единице измерения.

Килобит Кбит Кбит = 1024 бит ≈1000 бит
Мегабит Мбит 1 Мбит = 1024 Кбит ≈ 1 000 000 бит
Гигабит Гбит Гбит = 1024 Мбит ≈ 1 000 000 000 бит
Килобайт Кбайт (Кб) 1 Кбайт = 1024 байт ≈ 1000 байт
Мегабайт Мбайт (Мб) 1 Мбайт = 1024 Кбайт ≈ 1 000 000 байт
Гигабайт Гбайт (Гб) 1 Гбайт = 1024 Мбайт ≈ 1 000 000 000 байт

Поделиться с друзьями:

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.057 с.