М – среднее значение величины — КиберПедия 

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

М – среднее значение величины

2017-12-10 283
М – среднее значение величины 0.00 из 5.00 0 оценок
Заказать работу

Формула Стокса. Подробно объяснить ход опыта по определению коэффициента вязкости жидкости методом Стокса, дать формулу для вычисления коэффициента вязкости в этом опыте.

Вязкость проявляется при движении не только жидкости по сосу­дам, но и тел в жидкости. При небольших скоростях в соответствии с уравнением Ньютона сила сопротивления движущемуся телу пропорциональна вязкости жидкости, скорости движения тела и зависит от размеров тела. Так как невозможно указать общую формулу для силы сопротивления, то ограничимся рассмотрением частного случая.

Наиболее простой формой тела является сфера. Для сферичес­кого тела (шарик) зависимость силы сопротивления при его движе­нии в сосуде с жидкостью от перечисленных выше факторов выра­жается законом Стокса:

 

F тр = 6π n r v

где r — радиус шарика; v — скорость движения. Этот закон полу­чен в предположении, что стенки сосуда не влияют на движение тела.

При падении шарика в вязкой среде на него действу­ют три силы: а) сила тяжести тg = 4/3 pπr3g б) выталкивающая (архимедова) Fа= mжg = 4p жπ r3g, где mж — масса вытесненной шаром жидкости; рж — ее плотность; в) Fтp — сила сопротивления.

(9.12)

При попадании шарика в вязкую жидкость его скорость умень­шается. Так как сила сопротивления прямо пропорциональна скорости, то и она будет уменьшаться до тех пор, пока движение не станет равномерным.

mg + Fa + FTp = О

скорость вычисляет по формуле:

v0= 2(p-pж)r2g/(9n)

Для определения вязкости по методу Стокса берут высокий цилиндрический сосуд с исследуемой жидкостью. На сосуде имеются две кольцевые метки А и В. Метка А соответствует той высоте, где силы, действующие на шарик, уравновешивают друг друга и движение становится равномерным. Нижняя метка В нанесена для удобства отсчета времени. Бросая шарик в сосуд, отмечают по секундомеру время t прохождения шариком расстояния l между метками. Так как v = l/t то формула принимает вид

n = , где d- диаметр шарика.

22 Подробно объяснить ход опыта по определения коэффициента вязкости жидкостей методом Оствальда, дать формулу для вычисления коэффициента вязкости в этом опыте. Подробно объяснить ход опыта по определению коэффициента вязкости жидкостей методом Оствальда, дать формулу для вычисления коэффициента вязкости в этом опыте.

Медицинский вискозиметр используется для определения вяз­кости крови. Принцип его действия основан на том, что скорости продвижения жидкостей в капиллярах с одинаковыми сечениями при равных температурах и давлениях зависят от вязкости этих жидкостей.

Из формулы Пуазейля следует, что объемы жидкостей, про­текающих за равные промежутки времени по одинаковым ка­пиллярам, обратно пропорциональны вязкостям этих жидкостей. Следовательно,

V0/V= πr2l0/(πr2l) = l0/l = n/n0.

 

Медицинский вискозиметр состоит из двух одинаковых гра­дуированных капилляров A1 и А2. В капилляр A1 набирают определенный объем дистиллированной воды и пере­крывают кран Б. Это позволяет набрать в капилляр А иссле­дуемую жидкость, не изменяя уровень воды. Если теперь, открыв кран Б, создать разрежение в вискозиметре, то перемещение одной из жидкостей за одно и то же время будет обратно пропорцио­нально их вязкости:

n/n0 = l0/l или n = n0l0/l

 

 

где n — вязкость исследуемой жидкости; n0— вязкость воды. Если вязкость воды принять равной единице, а путь, прой­денный жидкостью, составляет одно деление вискозиметра, то на основании вязкость жидкости численно равна пути, пройденному при этом водой.

 

ПОВЕРХНОСТНОЕ НАТЯЖЕНИЕ

На поверхностях раздела жидкости и ее насыщенного пара, двух несмешиваемых жидкостей, жидкости и твердого тела возникает сила, обусловленная различным межмолекулярным взаимодействием граничащих сред.

Каждая молекула, расположенная внутри объема жидкости, равномерно окружена соседними молекулами и взаимодействует с ними, но равнодействующая этих сил равна нулю. На молекулу, находящуюся вблизи границы двух сред, вследствие неоднородности окружения действует сила, не скомпенсированная другими молекулами жидкости. Поэтому для перемещения молекул из объема в поверхностный слой необходимо совершить работу.

Поверхностное натяжение определяется отношением работы, затраченной на создание некоторой поверхности жидкости при постоянной температуре к площади этой поверхности: σ =А/S (9.21)

Условием устойчивого равновесия жидкостей является минимум энергии поверхностного слоя, поэтому при отсутствии внешних сил или в состоянии невесомости жидкость стремится иметь минимальную площадь поверхности при данном объеме и принимает форму шара.

Поверхностное натяжение может быть опре-делено не только энергетически. Стремление поверхностного слоя жидкости сократиться означает наличие в этом слое касательных сил — сил поверхностного натяжения. Если выбрать на поверхности жидкости некоторый

отрезок длиной L (рис. 9.8), то можно условно изобразить эти силы стрелками, перпендикулярными отрезку.

Поверхностное натяжение равно отношению силы поверхностного натяжения к длине отрезка, на котором действует эта сила: σ =F/L (9.22)

Поверхностное натяжение зависит от температуры. Вдали от критической температуры значение его убывает линейно при увеличении температуры. Снижения поверхностного натяжения можно достигнуть введением в жидкость поверхностно-активных веществ, уменьшающих энергию поверхностного слоя.

 

СМАЧИВАНИЕ И НЕСМАЧИВАНИЕ. КАПИЛЛЯРНЫЕ ЯВЛЕНИЯ

На границе соприкосновения различных сред может наблюдаться смачивание или несмачивание.

Рассмотрим поведение капли жидкости на поверхности другой, не смешивающейся с ней жидкости (рис. 9.9) и капли жидкости на поверхности твердого тела (рис. 9.10 и 9.11). На поверхностях раздела каждых двух сред (1 и 3, 2 и 1, 3 и 2) действуют силы поверхностного натяжения. Если эти силы разделить на длину окружности капли, то получим соответственно σ13, σ21, σ32.

Угол θ между смачиваемой поверхностью и касательной к поверхности жидкости, отсчитываемый через нее, называют краевым. За меру смачивания принимают величину cos θ= (σ32 – σ13)/σ21 (9.23)

Если σ32> σ13 (рис. 9.10), т.е. силы взаимодействия между молекулами жидкости и твердого тела больше, чем между молеку-лами твердого тела и газа, то θ < π/2 и жидкость смачивает твердое тело, поверхность которого в этом случае называется гидрофильной В случае σ32< σ13 (рис. 9.11) θ > π/2, жидкость не смачивает тела, поверхность его в этом случае называют гидрофобной. Несмачивающая жидкость не протекает через малые отверстия в твердом теле. При σ32 – σ13 = σ21 межмолекулярные силы полностью скомпенсированы (θ= 0). В этом случае равновесие не может наступить и капля растекается по поверхности твердого тела до тех пор, пока не покроет всей ее поверхности или не образуется мономолекулярный слой. Такой случай является идеальным смачиванием. К нему с некоторым приближением можно отнести растекание спирта или воды по чистой поверхности стекла, нефти по воде и пр.

Под действием сил поверхностного натяжения поверхностный слой жидкости искривлен и оказывает дополнительное по отношению к внешнему давление Др. Поверхностный слой подобен упругой оболочке, например резиновой пленке. Результирующая сил поверхностного натяжения искривленной поверхности направлена в сторону вогнутости (к центру кривизны). В случае сферической поверхности, радиус кривизны которой г, дополнительное давление Δp=2 σ/r (9.24)

Искривление поверхности (мениск), в частности, возникает в узких (капиллярных) трубках в результате смачивания или несма-чивания жидкостью их поверхности. При смачивании образуется вогнутый мениск (рис. 9.12). Силы давления направлены от жидкости наружу, т.е. вверх, и обусловливают подъем жидкости в капилляре. Это равновесное состояние, показанное на рисунке, наступает тогда, когда давление pgh уравновесит Δр.

Δp=2 σ cosθ /R (9.25)

pgh=2 σ cosθ /R

h=2 σ cosθ /(Rpg) (9.26)

В случае несмачивания cos θ < 0 и формула (9.26) покажет высоту опускания жидкости в капилляре.

Капиллярные явления определяют условия конденсации паров, кипения жидкостей, кристаллизации и т.п. Так, например, на молекулу пара (рис. 9.13; точка А) над вогнутым мениском жидкости действует больше молекул жидкости и, следовательно, большая сила, чем при выпуклом мениске. Это хорошо видно из рис. 9.13, на котором пунктиром условно показана сфера молекулярного действия, а штрихом — объемы жидкости, молекулы которых при-тягивают выделенную молекулу пара. В результате этого возникает капиллярная конденсация в смачиваемых тонких трубках даже при сравнительно малой влажности воздуха. Благодаря этому пористые вещества могут задерживать значительное количество жидкости из паров, что приводит к увлажнению белья, ваты в сырых помещени-ях, затрудняет сушку гигроскопических тел, способствует удержанию влаги в почве и т.п. Наоборот, несмачивающие жидкости не проникают в пористые тела. С этим связана, например, непроницаемость для воды перьев птиц, смазанных жиром.

Рассмотрим поведение пузырька воздуха, находящегося в капилляре с жидкостью. Если давление жидкости на пузырек с разных сторон одинаково, то оба мениска пузырька будут иметь одинаковый радиус кривизны (рис. 9.14, а). При избыточном давлении с одной из сторон, например при движении жидкости, мениски деформируются, изменятся их радиусы кривизны (рис. 9.14, б), дополнительное давление Δр с разных сторон станет неодинаковым. Это приведет к такому воздействию на жидкость со стороны пузырька воздуха (газа), которое затруднит или прекратит движение жидкости. Такие явления могут происходить в кровеносной системе человека.

Попавшие в кровь пузырьки воздуха могут закупорить мелкий сосуд и лишить кровоснабжения какой-либо орган. Это явление, называемое эмболией, может привести к серьезному функциональному расстройству или даже летальному исходу. Так воздушная эмболия может возникнуть при ранении крупных вен: проникший в ток крови воздух образует воздушный пузырь, препятствующий прохождению крови. Пузырьки воздуха не должны попадать в вены при внутривенных вливаниях.

Газовые пузырьки в крови могут появиться у водолазов при быстром подъеме с большой глубины на поверхность, у летчиков и космонавтов при разгерметизировании кабины или скафандра на большой высоте (газовая эмболия). Это обусловлено переходом газов крови из растворенного состояния в свободное — газообразное в результате понижения окружающего атмосферного давления. Ведущая роль в образовании газовых пузырьков при уменьшении давления принадлежит азоту, так как он обусловливает основную часть общего давления газов в крови и не участвует в газообмене организма и окружающего воздуха.

26. Зако́н Гу́ка — уравнение теории упругости, связывающее напряжение и деформацию упругой среды

Поскольку закон Гука записывается для малых напряжений и деформаций, он имеет вид простой пропорциональности. В словесной форме закон звучит следующим образом:Сила упругости, возникающая в теле при его деформации, прямо пропорциональна величине этой деформации

Для тонкого растяжимого стержня закон Гука имеет вид:

Здесь — сила, которой растягивают (сжимают) стержень , — абсолютное удлинение (сжатие) стержня, а — коэффициент упругости (или жёсткости).

Коэффициент упругости зависит как от свойств материала, так и от размеров стержня. Можно выделить зависимость от размеров стержня (площади поперечного сечения и длины ) явно, записав коэффициент упругости как

Величина называется модулем упругости первого рода или модулем Юнга и является механической характеристикой материала.

Также при расчёте прямых стержней применяют запись закона Гука в относительной форме

 

Следует иметь в виду, что закон Гука выполняется только при малых деформациях. При превышении предела пропорциональности связь между напряжениями и деформациями становится нелинейной. Для многих сред закон Гука неприменим даже при малых деформациях.

Электри́чество — совокупность явлений, обусловленных существованием, взаимодействием и движением электрических зарядов.

Электрический заряд — это свойство тел (количественно характеризуемое физической величиной того же названия), проявляющееся прежде всего в способности создавать вокруг себя электрическое поле и посредством него оказывать воздействие на другие заряженные (то есть обладающие электрическим зарядом) тела[7]. Электрические заряды разделяют на положительные и отрицательные (выбор, какой именно заряд назвать положительным, а какой отрицательным, считается в науке чисто условным, однако этот выбор уже исторически сделан и теперь — хоть и условно — за каждым из зарядов закреплен вполне определенный знак). Тела, заряженные зарядом одного знака, отталкиваются, а противоположно заряженные — притягиваются. При движении заряженных тел (как макроскопических тел, так и микроскопических заряженных частиц, переносящих электрический ток в проводниках) возникает магнитное поле и имеют, таким образом, место явления, позволяющие установить родство электричества и магнетизма (электромагнетизм) (Эрстед, Фарадей, Максвелл). В структуре материи электрический заряд как свойство тел восходит к заряженным элементарным частицам, например, электрон имеет отрицательный заряд, а протон и позитрон — положительный.

Разделы электроники, в которых рассматриваются особенности применения электронных систем для решения медико-биологических задач, а также устройство соответствующей аппаратуры, получили название медицинской электроники. Она основывается на сведениях из физики, математики, техники, медицины, биологии, физиологии и других наук, она включает в себя биологическую и физиологическую электронику. Существуют устройства для получения, передачи и регистрации медико-биологической информации; электронные устройства, обеспечивающие дозирующее воздействие на организм различными физическими факторами; кибернетические электронные устройства

Электрический диполь.

Поле диполя

Электрический диполь - это система из двух одинаковых по модулю точечных электрических зарядов, расположенных на некотором расстоянии друг от друга(плечо диполя).

основная характеристика диполя-его электрический(дипольный)момент- вектор, равный произведению заряда на плечо диполя, направленный от отрицательного заряда к положительному.

p = dl.

Единицей электрического момента диполя является кулон-метр.

На диполь в однородном электрическом поле действует вращающий момент, зависящий от электрического момента, ориентации диполя в поле и напряженности поля. На диполь действует сила, зависящая от его электрического момента и степени неоднородности поля

Если диполь ориентирован в неоднородном электрическом поле не вдоль силовой линии, то на него дополнительно действует еще и вращающий момент. Свободный диполь практически всегда втягивается в область больших значений напряженности поля.

сам диполь является источником тока.

 

Понятие о мультиполе.

Диполь является частным случаем системы электрических зарядов, обладающих определенной симметрией. Общее название подобных распределений зарядов – электрические мультиполя (I = 0, 1, 2 и т. д.), число зарядов мультиполя определяется выражением 21.

Так, мультиполем нулевого порядка (20 = 1) является одиночный точечный заряд, мультиполем первого порядка (21 = 2) – диполь, мультиполем второго порядка (22 = 4) – квадруполь, мультиполем третьего порядка (23 = 8) – октуполь и т. д. Потенциал поля мультиполя убывает на значительных расстояниях от него (R &gt; d, где d – размеры мультиполя)

пропорционально I/R1+1. Если заряд распределен в некоторой области пространства, то потенциал электрического поля вне системы зарядов можно представить в виде некоторого приближенного ряда:

Здесь R – расстояние от системы зарядов до точки А с потенциалом Ф;

f1, f2, f3…. – некоторые функции, зависящие от вида мультиполя, его заряда и от направления на точку А.

Первое слагаемое соответствует монополю, второе – диполю, третье – квадруполю и т. д. В случае нейтральной системы зарядов первое слагаемое равно нулю.

 

Пьезоэлектрики- кристалл. диэлектрики, в которых при отсутствии эл поля при деформации может возникнуть поляризация(прямой пьезоэффект).эффект обусловлен деформацией элементарных крастал ячеек и сдвигом подрешеток относительно друг друга при механических деформациях. Поляризованность при небольших мех деформ пропорциональна их величине. обратный:при наложении на кристаллы эл поля последние деформируются. Эффекты применяют в тех случаях, когда необходимо преобразовать мех величину в электр и наоборот

 

Обеспечение электробезопасности включает три основные группы мероприятий: защита от прикосновения к находящимся под напряжением частям, защита от напряжения прикосновения, защита пациента. Для этого изолируют части приборов и препаратов, находящиеся под напряжением, друг от друга и от корпуса аппаратуры.

Надежность-способность изделия не отказывать в работе в заданных условиях эксплуатации и сохранять свою работоспособность в течении заданного времени.

При касании человеком корпуса аппаратуры через тело человека пройдет некоторый ток, называемый током утечки.

Единичное нарушение- отказ одного из средств защиты от поражения электрическим током.

Типы приборов:

Н-изделия с нормальной степенью защиты(стерилизаторы)

В- изделия с повышенной степенью защиты(электрокардиографы)

ВF- с повышенной степенью защиты и изолированной рабочей частью(стимуляторы)

CF- с наивысшей степенью защиты и изолированной рабочей частью(электрокардиостимуляторы)

 

36 Классы приборов по способу дополнительной защиты от поражения электрическим током, их обозначения, особенности. В зависимости от возможных последствий отказа в процессе эксплуатации медицинские изделия подразделяются на четыре класса:

А — изделия, отказ которых представляет непосредственную опасность для жизни пациента или персонала.-приборы для наблюдения за жизненно важными функциями боль­ного, аппараты искусственного дыхания и кровообращения и др.;

Б — изделия, отказ которых вызывает искажение информации о состоянии организма или окружающей среды, не приводящее к непосредственной опасности для жизни пациента или персонала, либо вызывает необходимость немедленного использования ана­логичного по функциональному назначению изделия, находяще­гося в режиме ожидания- системы, следящие за больными, аппараты для стиму­ляции сердечной деятельности и др.;

В — изделия, отказ которых снижает эффективность или за­держивает лечебно-диагностический процесс в некритических си­туациях, либо повышает нагрузку на медицинский или обслужи­вающий персонал, либо приводит только к материальному ущер­бу.-диагностическая и физиотерапевтическая аппаратура, инструментарий и др.;

Г — изделия, не содержащие отказоспособных частей. Элек- тромедицинская аппаратура к этому классу не относится.
Защитное заземление и зануление, которые имеют одно и тоже назначение - защитить человека от поражения электрическим током, если он прикоснулся к корпусу

 

электроприбора, который из-за нарушения изоляции оказался под напряжением.

 

Защитное заземление - преднамеренное соединение с землей частей электроустановки. Применятся в сетях с изолированной нейтралью, например, в старых домах с сетями 220В. значительно снижает напряжение, под которое может попасть человек, но это напряжение, может быть не равно нулю. Это объясняется тем,что сам заземлитель и земля имеют некоторое сопротивление.
Зануление — преднамеренное электрическое соединение частей электроустановки, нормально не находящихся под напряжением с глухо заземленной нейтралью трансформатора через нулевой провод сети. Это приводит к тому, что замыкание любой из фаз на корпус электроустановки превращается в короткое замыкание этой фазы с нулевым проводом. Ток в этом случае возникает значительно больший, чем при использовании защитного заземления, и защитная аппаратура сработает эффективнее. Быстрое и полное отключение поврежденного оборудования — основное назначение зануления. Применятся в новых домах.

 

любому человеку, имеющему дело с электричеством, надо помнить следующие положения:

— Очень опасно одновременное прикосновение двумя руками к двум оголенным проводам.

— Очень опасно прикосновение к оголенному проводу, стоя на земле, на сыром или цементном полу.

— Опасно пользоваться неисправными электрическими приборами. Электрические приборы должны периодически осматривать квалифицированные специалисты.

— Нельзя собирать, разбирать и исправлять что-либо в электрическом приборе, не отключив его от источника.

— Нельзя производить какие-либо операции с электрической аппаратурой, не выключив ее из сети.

 

37. Надёжность электронной медицинской аппаратуры. Вероятность безотказной работы, закон изменения со временем. Интенсивность отказов. Медицинская аппаратура должна нормально функционировать. Способность изделия не отказывать в работе в заданных условиях эксплуатации и сохранять свою работоспособность в течение заданного интервала времени характеризуют обобщающим термином – «надежность». Для медицинской аппаратуры проблема надежности особенно актуальна, так как выход приборов и аппаратов из строя может привести не только к экономическим потерям, но и к гибели пациентов. Способность аппаратуры к безотказной работе зависит от многих причин, учесть действие которых практически невозможно, поэтому количественная оценка надежности имеет вероятностный характер. Так, например, важным параметром является вероятность безотказной работы. Она оценивается экспериментально отношением числа N работающих (не испортившихся) за определенное время t изделий к общему числу No испытывавшихся изделий.

 

P(t)= N(t)/No

 

Эта характеристика оценивает возможность сохранения изделием работоспособности в заданном интервале времени. Другим количественным показателем надежности является интенсивность отказов /\ (t) – лямбда. Этот показатель равен отношению числа отказов dN к произведению времени dt на общее число N работающих элементов:

/\(t) = - dN/Ndt

 

Между вероятностью безотказной работы Р и интенсивностью отказов /\ существует определенная связь. Для случаев /\=const дифференциальное уравнение, в котором переменные разделены по разным частям: dN/N=-/\dt; интегрируя и получая нижние пределы (начальное число No испытывавшихся изделий и время t=0) и верхние пределы (число N безотказно работающих изделий в момент t), получаем:

 

N t

|dN/N=-/\ |dt, lnN/No=-/\t, N/No=e^-/\t

No 0

 

Сопоставляя вероятность безотказной работы и интенсивность отказов, получаем:

 

P(t) = e ^ - /\ t

 

Таким образом, при постоянной интенсивности отказов получаем экспоненциальный закон изменения со временем вероятности безотказной работы. Этот закон можно использовать для оценки надежности аппаратуры.

 

В зависимости от возможных последствий отказа в процессе эксплуатации медицинские изделия подразделяются на четыре класса.

 

А – изделия, отказ которых представляет непосредственную опасность для жизни пациента или персонала. К изделиям этого класса относятся приборы для наблюдения за жизненно важными функциями больного, аппараты искусственного дыхания и кровообращения.

 

Б – изделия, отказ которых вызывает искажение информации о состоянии организма или окружающей среды, не приводящее к непосредственной опасности для жизни пациента или персонала, либо вызывает необходимость немедленного использования аналогичного по функциональному назначению изделия, находящегося в режиме ожидания. К таким изделиям относятся системы, следящие за больным, аппараты стимуляции сердечной деятельности.

 

В – изделия, отказ которых снижает эффективность или задерживает лечебно-диагностический процесс в некритических ситуациях, либо повышает нагрузку на медицинский или обслуживающий персонал, либо приводит только к материальному ущербу. К этому классу относится большая часть диагностической и физиотерапевтической аппаратуры, инструментарий и др.

 

Г – изделия, не содержащие отказоспособных частей. Электромедицинская аппаратура к этому классу не относится.

 

38. Основные группы медицинских электронных приборов и аппаратов. Особенности сигналов, обрабатываемых медицинской электронной аппаратурой и связанные с ними требования к медицинской электронике. Электроника – прикладная отрасль знаний. Одно из распространенных применений электронных устройств связано с диагностикой и лечением заболеваний. Разделы электроники, в которых рассматриваются особенности применения электронных систем для решения медико-биологических задач, а также устройство соответствующей аппаратуры, получили названия медицинской электроники.

 

Виды медицинской электроники:

УСТРОЙСТВО для получения (съема), передачи и регистрации медико-биологической. Такая информация может быть не только о процессах, происходящих в организме (биологическая ткань, органы, системы), но и о состоянии окружающей среды (санитарно-гигиеническое назначение), о процессах, происходящих в протезах и т.д. Сюда относится большая часть диагностической аппаратуры: баллистокардиографы, фонокардиографы, реографы и др. Для подавляющего большинства этих приборов в радиотехническом отношении характерно наличие усилителей электрических сигналов.

ЭЛЕКТРОННЫЕ устройства, обеспечивающие дозирующее воздействие на организм различными физическими факторами (ультразвук, электрический ток, электрмагнитные поля и др.) с целью лечения: аппараты микроволновой терапии, аппараты для электрохирургии, кардиостимуляторы и др. С физической точки зрения эти устройства являются генераторами различных электрических сигналов.

КИБЕРНЕТИЧЕСКИЕ электронные устройства: а) электронные вычислительные машины для переработки, хранения и автоматического анализа медико-биологической информации; б) устройства для управления процессами жизнедеятельности и автоматического регулирования состоянием окружающей человека среды; в) электронные модели биологических процессов и др.

 

Применение электронных медицинских приборов и аппаратов повышает эффективность диагностики и лечения и увеличивает производительность труда медицинского персонала.

 

В медицинских приборах (например в реографах), используют электроды для съема электрических сигналов, для подведения внешнего элетромагнитного воздействия и др. с целью лечения и при элетростимуляции. Электроды – проводники специальной формы, соединяющие измерительную цепь с биологической системой.

 

Важная физическая проблема, относящаяся к электродам для съема биоэлектрического сигнала, заключается в минимизации потерь полезной информации, особенно на переходном сопротивлении электрод-кожа. Для уменьшения переходного сопротивления электрод-кожа стараются увеличить проводимость среды между электродом и кожей, используют марлевые салфетки, смоченные физиологическим раствором, или электропроводящие пасты. Сопротивление уменьшается, если увеличить площадь контакта электрод-кожа. В зависимости от возможных последствий отказа в процессе эксплуатации медицинские изделия подразделяются на четыре класса:

41.

42.

М – среднее значение величины

- усредненные характеристики степени разброса возможных значений этой величины относительно ее М.

Для непрерывной случайной величины:

М(х)=

 

 

Законы распределения непрерывных случайных величин

Закон распределения непрерывной случайной величины нельзя задать также, как для дискретной. Он неприменим в силу того, что нельзя перечислить все бесконечное несчетное множество значений, а вероятности каждого отдельно взятого значения непрерывной случайной величины равны нулю.

Для описания закона распределения непрерывной случайной величины Х предлагается другой подход: рассматривать не вероятности событий Х=х для разных х, а вероятности события Х<х. При этом вероятность P(X<x) зависит от текущей переменной, т. е. является некоторой функцией от х.

Функцией распределения случайной величины Х называется функция F(x), выражающая для каждого х вероятность того, что случайная величина Х примет значение, меньшее х:

.

Функцию F(x) называют интегральной функцией распределения или интегральным законом распределения.

Способ задания непрерывной случайной величины с помощью функции распределения не является единственным. Необходимо определить некоторую функцию, отражающую вероятности попадания случайной точки в различные участки области возможных значений непрерывной случайной величины. Т. е. представить некоторую замену вероятностям pi для дискретной случайной величины в непрерывном случае.

Такой функцией является плотность распределения вероятностей. Плотностью вероятности (плотностью распределения, дифференциальной функцией) случайной величины Х называется функция f(x), являющаяся первой производной интегральной функции распределения:

.

Про случайную величину Х говорят, что она имеет распределение (распределена) с плотностью f(x) на определенном участке оси абсцисс.

Равномерный закон распределения. Непрерывная случайная величину Х имеет равномерный закон распределения (закон постоянной плотности) на отрезке [ a; b ], если на этом отрезке функция плотности вероятности случайной величины постоянна, т.е. f(x) имеет вид:

Математическое ожидание
. Математическое ожидание случайной величины, равномерно распределенной на отрезке (a, b), равняется середине этого отрезка.

Дисперсия:

 

Величина называется поправкой Шеппарда.

Вероятность попадания значения случайной величины, имеющей равномерное распределение, на интервал (,), принадлежащий целиком отрезку [ a, b ]:

 

Геометрически эта вероятность представляет собой площадь заштрихованного прямоугольника. Числа а и b называются параметрами распределения и однозначно определяют равномерное распределение.

Нормальный закон распределения (закон Гаусса). Непрерывная случайная величина Х имеет нормальный закон распределения с параметрами и (обозначают ), если ее плотность вероятности имеет вид:

где ,

Математическое ожидание характеризует центр рассеивания значений случайной величины и при изменении кривая будет смещаться вдоль оси абсцисс (см. рис. 2 при и при ). Если же при неизменном математическом ожидании у случайной величины изменяется дисперсия, то кривая будет изменять свою форму, сжимаясь или растягиваясь (см. рис. 2 при : ; ; ). Таким образом, параметр характеризует положение, а параметр - форму кривой плотности вероятности.

 

5. Закон распространения Бернулли – соответствие между значениями случайной величины и их вероятностями (рассчитанными по формуле Бернулли):

q=1-p – вероятность НЕнаступления.

Случайной величиной, называют такую величину, которая принимает значения в зависимости от стечения случайных обстоятельств.

Случайная величина называется дискретной, если она принимает счетное множество значений: число букв на произвольной странице книги, энергия электрона в атоме, число волос на голове человека и т. д.

Непрерывная случайная величина принимает любые значения внутри некоторого интервала: температура воздуха за определенный промежуток времени, масса зерен в колосьях пшеницы, координата места попадания пули в цель(принимаем пулю за материальную точку) и т.д.

Биномиальный закон (распределение Бернулли)

В общей форме биномиальный закон описывает осуществление признака в испытаниях с возвратом. Наглядной схемой таких испытаний является последовательный выбор с возвращением шаров из урны, содержащей белых и чёрных шаров. Если — число появления белых шаров в выборке из шаров, то

где — вероятность появления при одном извлечении соответственно белого и чёрного,

Производящая функция биномиального распределения задаётся формулой

 

 

Основные характеристики биномиального распределения (математическое ожидание и дисперсия):

Математическое ожидание дискретной случайной величины – сумма произведений всех возможных ее значений на вероятности этих значений.

Дисперсией случайной величины наз. Математическое ожидание квадрата отклонения случайной величины от ее математического ожидания.

Пример 1. Вероятность получения бракованного изделия равна 0,01. Какова вероятность того, что среди 100 изделий окажется не более 3 бракованных?

 

Решение. Пусть


Поделиться с друзьями:

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.166 с.