Из чего состоит проводящая система сердца? — КиберПедия 

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Из чего состоит проводящая система сердца?

2017-12-10 1294
Из чего состоит проводящая система сердца? 0.00 из 5.00 0 оценок
Заказать работу

• Начинается проводящая система сердца синусовым узлом (узел Киса-Флака), который расположен субэпикардиально в верхней части правого предсердия между устьями полых вен. Это пучок специфических тканей, длиной 10-20 мм, шириной 3-5 мм. Узел состоит из двух типов клеток: P-клетки (генерируют импульсы возбуждения), T-клетки (проводят импульсы от синусового узла к предсердиям).

• Далее следует атриовентрикулярный узел (узел Ашоффа-Тавара), который расположен в нижней части правого предсердия справа от межпредсердной перегородки, рядом с устьем коронарного синуса. Его длина 5 мм, толщина 2 мм. По аналогии с синусовым узлом, атриовентрикулярный узел также состоит из P-клеток и T-клеток.

• Атриовентрикулярный узел переходит в пучок Гиса, который состоит из пенетрирующего (начального) и ветвящегося сегментов. Начальная часть пучка Гиса не имеет контактов с сократительным миокардом и мало чувствительна к поражению коронарных артерий, но легко вовлекается в патологические процессы, происходящие в фиброзной ткани, которая окружает пучок Гисса. Длина пучка Гисса составляет 20 мм.

• Пучок Гиса разделяется на 2 ножки (правую и левую). Далее левая ножка пучка Гиса разделяется еще на две части. В итоге получается правая ножка и две ветви левой ножки, которые спускаются вниз по обеим сторонам межжелудочковой перегородки. Правая ножка направляется к мышце правого желудочка сердца. Что до левой ножки, то мнения исследователей здесь расходятся. Считается, что передняя ветвь левой ножки пучка Гиса снабжает волокнами переднюю и боковую стенки левого желудочка; задняя ветвь - заднюю стенку левого желудочка, и нижние отделы боковой стенки.

• правая ножка пучка Гиса;

• правый желудочек;

• задняя ветвь левой ножки пучка Гиса;

• межжелудочковая перегородка;

• левый желудочек;

• передняя ветвь левой ножки;

• левая ножка пучка Гиса;

• пучок Гиса.


На рисунке представлен фронтальный разрез сердца (внутрижелудочковой части) с разветвлениями пучка Гиса. Внутрижелудочковую проводящую систему можно рассматривать как систему, состоящую из 5 основных частей: пучок Гиса, правая ножка, основная ветвь левой ножки, передняя ветвь левой ножки, задняя ветвь левой ножки.
Наиболее тонкими, следовательно, уязвимыми, являются правая ножка и передняя ветвь левой ножки пучка Гиса. Далее, по степени уязвимости: основной ствол левой ножки; пучок Гиса; задняя ветвь левой ножки.
Ножки пучка Гиса и их ветви состоят из двух видов клеток - Пуркинье и клеток, по форме напоминающие клетки сократительного миокарда.

• Ветви внутрижелудочковой проводящей системы постепенно разветвляются до более мелких ветвей и постепенно переходят в волокна Пуркинье, которые связываются непосредственно с сократительным миокардом желудочков, пронизывая всю мышцу сердца.

Сокращения сердечной мышцы (миокарда) происходят благодаря импульсам, возникающим в синусовом узле и распространяющимся по проводящей системе сердца: через предсердия, атриовентрикулярный узел, пучок Гиса, волокна Пуркинье - импульсы проводятся к сократительному миокарду.

Вопрос №38 Электрический диполь. Определение. Электрический момент диполя. Токовый диполь. Определение. Механизм формирования дипольных свойств живого сердца.

Электрический диполь в физике - это два близко расположенных заряда разного знака, равных по абсолютной величине (- q и + q). Основной физической величиной для диполя является вектор электрического моментадиполя , равный по величине произведению

, (1)

где - расстояние между зарядами. При этом вектор направлен вдоль оси диполя АА от отрицательного заряда (- q) к положительному (+ q) (рис. 3).

Электрический момент диполя - основная характеристика электрического диполя; векторная величина:
- равная произведению абсолютного значения одного из зарядов диполя и расстояния между ними; и
- направления от отрицательного к положительному заряду.

Токовыйдиполь – система из двух полюсов источника тока (истока и стока), помещенных в проводящую электролитическую среду.

Сердце рассматривается как суммарный токовый диполь, являющийся результатом взаимодействия большого числа элементарных диполей, которые создают одиночные волокна миокарда.

Источником электрического поля сердца являются электрические заряды - ионы, распределенные сложным образом в клетках и межклеточном пространстве миокарда. Каждая клетка сердечной мышцы создаёт электрическое поле, которое имеет характеристики, подобные в общих чертах характеристикам электрического поля других типов мышечных клеток. Но потенциал действия (ПД) сердечных клеток отличается от ПД клеток поперечнополосатых мышц своей формой и длительностью. Электрическое поле сердца в целом образуется наложением электрических полей отдельных клеток. Изменения электрического поля сердца происходят при деполяризации и реполяризации мембраны клеток сердца. Картина эквипотенциальных линий электрического поля изображена на рис. 1 (в момент сокращения желудочков). Вид этих линий напоминает поле, создаваемое электрическим диполем (рис. 2).

Вопрос № 39. Физические основы электрокардиографии. Теория Эйтховена. Распределение эквипотенциальных линий на поверхности тела. Стандартные отведения.

ЭКГ – физический метод регистрации электрической деятельности сердца с помощью усилителя биопотенциалов – электрокардиографа.

Сердце, как электрический диполь, создает электрическое поле некоторой напряженности и, следовательно, его электрические силовые линии будут выходить на поверхность тела. На поверхности тела можно выделить линии равного потенциала:

Т. К. возбужденный участок сердца заряжается отрицательно по отношению к невозбужденному, то верхняя правая часть тела (выше изоэлектрической линии с нулевым потенциалом) будет заряжаться отрицательно, а нижняя левая часть положительно.

Т. О. если чувствительный вольтметр присоединить к тем двум участкам поверхности тела, которые различаются значением потенциала, то он зарегистрирует разность потенциалов.

Эйтховена теория — теория формирования электрокардиограммы, согласно которой сердце рассматривается как бесконечно малый диполь, расположенный в центре треугольника Эйтховена и непрерывно меняющий величину и направление вектора электродвижущей силы; проекции вектора на каждую из сторон треугольника определяют форму электрокардиограммы в трех стандартных отведениях (с учетом смещения третьего угла на дистальную часть левой голени.

Положения:

1. Сердце рассматривается как электрический токовый диполь, имеющий момент. Вектор является векторной суммой дипольных моментов различных микроучастков сердца. Этот результирующий вектор называется интегральным электрическим вектором сердца

2. Диполь помещен в однородную электропроводящую среду, которой являются ткани организма.

3. Вектор меняется при работе сердца по величине и направлению. Это обусловлено последовательностью распространения возбуждения в различных отделах сердца от верхушки сердца по стенкам правого и левого желудочков к его основанию.

4. Разность потенциалов между точками на поверхности тела (например: между правой и левой рукой) пропорциональна проекции вектора на линию, соединяющую точки съема.

5. Левая рука, правая рука и левая нога образуют, так называемый треугольник Эйтховена и являются стандартными точками съема ЭКГ в I, II и III отведениях.

Эквипотенциальная линия - воображаемая линия, соединяющая последовательность точек, имеющих одинаковый потенциал в данный момент времени.

Стандартные двухполюсные отведения, предложенные в 1913 г. Эйнтховеном, фиксируют разность потенциалов между двумя точками электрического поля, удаленными от сердца и расположенными во фронтальной плоскости - на конечностях. Для записи этих отведений электроды накладывают на правой руке (красная маркировка), левой руке (желтая маркировка) и на левой ноге (зеленая маркировка).

Эти электроды попарно подключаются к электрокардиографу для регистрации каждого из трех стандартных отведений. Четвертый электрод устанавливается на правую ногу для подключения заземляющего провода (черная маркировка).

Стандартные отведения от конечностей регистрируют при следующем попарном подключении электродов

• I отведение - левая рука и правая рука;

• II отведение - левая рука и правая рука;

• III отведение - левая нога и левая рука.

Вопрос №40. ЭКГ здорового сердца: кривая, формы и виды зубцов. Информационное значение зубцов, интервалов и сегментов ЭКГ.

Зубцы и интервалы на ЭКГ.
Любопытно, что за рубежом интервал P-Q обычно называют P-R.

Любая ЭКГ состоит из зубцов, сегментов и интервалов.

ЗУБЦЫ - это выпуклости и вогнутости на электрокардиограмме.
На ЭКГ выделяют следующие зубцы:

P (сокращение предсердий),

Q, R, S (все 3 зубца характеризуют сокращение желудочков),

T (расслабление желудочков),

U (непостоянный зубец, регистрируется редко).

СЕГМЕНТЫ
Сегментом на ЭКГ называют отрезок прямой линии (изолинии) между двумя соседними зубцами. Наибольшее значение имеют сегменты P-Q и S-T. Например, сегмент P-Q образуется по причине задержки проведения возбуждения в предсердно-желудочковом (AV-) узле.

ИНТЕРВАЛЫ
Интервал состоит из зубца (комплекса зубцов) и сегмента. Таким образом, интервал = зубец + сегмент. Самыми важными являются интервалы P-Q и Q-T.

Зубец Р – электрическая активность (деполяризация) предсердий. Регистрирует алгебраическую сумму возбуждений правого (восходящая часть) и левого (нисходящая часть) предсердий.

Зубец Q – отражает деполяризацию межжелудочковой перегородки. Направлен вниз.

Зубец R – почти полный охват возбуждением обоих желудочков, направлен вверх, самый высокий зубец.

Зубец S – конечный элемент желудочкового комплекса, когда оба желудочка охвачены возбуждением.

Зубец Т – заканчивается желудочковый комплекс, когда прекращается деполяризация, т. е. наступает реполяризация обоих желудочков.

Интервал PQ - это расстояние (временной промежуток) от начала зубца P до начала зубца Q. Он соответствует времени прохождения возбуждения по предсердиям и атриовентрикулярному узлу до миокарда желудочков.

Сегмент ST - это отрезок кривой ЭКГ между концом комплекса QRS и началом зубца T, который соответствует периоду сердечного цикла, когда оба желудочка полностью охвачены возбуждением.

Интервал QT (электрическая систола желудочков) - время от начала комплекса QRS до конца зубца T.

41. Построение есть в лабораторном практикуме 2008 г.С 18

Измеряемые параметры

Основные исследования при установлении диагноза больному по ЭКГ сводятся к измерению характерных временных интервалов, определению изолинии и измерению амплитуды зубцов ЭКГ. Ниже приводятся только самые основные измеряемые параметры.

Измерение амплитуд зубцов ЭКГ в клинической практике традиционно производится по записи сигнала на бумажной ленте (в миллиметрах). При пересчете соответствующих значений в размерность электрического напряжения следует помнить, что стандартная установка чувствительности записывающих устройств при электрокардиографических исследованиях составляет 1 мВ=10 мм.

Зубцы ЭКГ обозначаются латинскими буквами. Если амплитуда зубца QRS-комплекса со стандартного электрокардиографа составляет больше 5 мм, то этот зубец обозначается прописной (заглавной) буквой, если меньше - строчной (малой) буквой. На рис.2 дано схематическое изображение зубцов нормальной ЭКГ.

Рисунок 2 - Схематическое изображение зубцов и интервалов нормальной ЭКГ

Предсердный комплекс состоит из зубца Р и изоэлектрического отрезка, отделяющего его от зубца Q (или R, если зубец Q на ЭКГ отсутствует). Зубец Р отображает возбуждение предсердий, а интервал PQ (R) соответствует времени от начала возбуждения (сокращения) предсердий до начала возбуждения (сокращения) желудочков и характеризует предсердно-желудочковую проводимость.

Зубец Р образуется в результате возбуждения обоих предсердий. Он начинает регистрироваться сразу после того, как импульс выходит из синусового узла. В норме возбуждение правого предсердия начинается несколько раньше возбуждения левого предсердия. Суммирование векторов правого и левого предсердий и приводит к регистрации зубца Р. На рис.3 цифрой 1 обозначена часть зубца Р, связанная с возбуждением правого предсердия, деполяризация которого начинается раньше. Цифра 2 указывает на часть зубца Р, связанную с возбуждением левого предсердия. Левое предсердие позже начинает и позже заканчивает свое возбуждение. В результате наложения друг на друга возбуждения правого и левого предсердий и образуется зубец Р. Подъем и спуск зубца Р обычно пологий, вершина закруглена.

Рисунок 3 – Схема происхождения зубца Р в норме

Зубец Р в большинстве стандартных отведений обычно положительный. Положительный зубец Р является показателем синусового ритма. Амплитуда зубца Р в норме не должна превышать 2,5 мм, продолжительность зубца Р составляет до 0,1 с. Зубец Р может быть зазубрен на вершине, однако расстояние между зазубринами не должно превышать 0,02 с. Различают время активации предсердий - это время от начала возбуждения предсердия до охвата возбуждением максимального количества его волокон. Время активации правого предсердия измеряется от начала зубца Р до первой его вершины. В норме оно не должно превышать 0,04 с. Время активации левого предсердия соответствует периоду от начала зубца Р до второй его вершины или до его наиболее высокой точки. У здоровых людей этот интервал не должен превышать 0,06 с. При повышении частоты сердечных сокращений зубец Р может становиться более широким и острым. При значительной тахикардии зубец Р может сливаться с предшествующим зубцом Т, теряться в нем, что делает невозможным определение его высоты.

Интервал PQ (PR) - от начала зубца Р до начала зубца Q (или R) - соответствует времени прохождения возбуждения по предсердиям и атриовентрикулярному соединению до миокарда желудочков. Интервал PQ (или PR) расположен от начала зубца Р до начала комплекса QRS. Если комплекс начинается с зубца Q, то имеется интервал PQ, если начальным зубцом комплекса QRS является зубец R, то можно говорить об интервале PR. Интервал PQ изменяется по продолжительности в зависимости от возраста и массы тела больного. Он зависит также от частоты ритма (частоты сердцебиений), укорачиваясь при тахикардии. В норме интервал PQ составляет 0,12-0,18 с. Он имеет тенденцию удлиняться с возрастом и укорачиваться при учащении ритма. Продолжительность интервала PQ измеряют в отведении от конечностей, в котором продолжительность этого интервала наибольшая. Для измерения продолжительности интервала PQ выбирают то отведение, где хорошо выражены зубец Р и комплекс QRS.

Сегмент PQ располагается от конца зубца Р до начала зубца Q (или R) обычно на изолинии. При большой его продолжительности на нем иногда виден отрицательный зубец ТЗ, обусловленный реполяризацией предсердий.

Индекс Макруза - это отношение продолжительности зубца Р к длительности сегмента PQ. В норме индекс Макруза составляет 1,1-1, Этот индекс иногда помогает в диагностике гипертрофии предсердий.

Желудочковый комплекс (QT) состоит из начального комплекса QRS, отрезка ST и зубца Т. Комплекс QRS регистрируется во время возбуждения желудочков. Обычно это наибольшее по амплитуде отклонение ЭКГ. Ширина комплекса QRS в норме составляет 0,06-0,08 с и указывает на продолжительность внутрижелудочкового проведения возбуждения. С возрастом ширина комплекса QRS обычно увеличивается. Ширина комплекса QRS может несколько уменьшаться при учащении ритма и наоборот.

Амплитуда зубцов комплекса QRS значительно варьируется. Она обычно больше в грудных отведениях, чем в стандартных. В норме, по крайней мере, в одном из стандартных отведений или в отведениях от конечностей, амплитуда комплекса QRS должна превышать 5 мм, а в грудных отведениях - 8 мм. Если амплитуда комплекса QRS во всех стандартных отведениях от конечностей меньше 5 мм или во всех грудных отведениях меньше 8 мм, то говорят о снижении вольтажа зубцов ЭКГ.

В стандартных отведениях и усиленных отведениях от конечностей у взрослых амплитуда комплекса QRS в каждом из этих отведений не должна превышать 22 мм. В любом из грудных отведений амплитуда желудочкового комплекса не должна превышать 25 мм. В тех случаях, когда у взрослых амплитуда комплекса QRS превышает эти нормативы, говорят о превышении вольтажа ЭКГ. Термин "повышение вольтажа зубцов ЭКГ" или "увеличение амплитуды комплекса QRS" не отличаются точностью принятых критериев, так как для него еще нет четких нормативов у людей различного телосложения и с разной толщиной грудной клетки.

Зубец Q - начальный зубец комплекса QRS. Он регистрируется во время возбуждения левой половины межжелудочковой перегородки. В норме ширина зубца Q не должна превышать 0,03 с, а его амплитуда в каждом отведении должна быть меньше 1/4 амплитуды следующего за ним зубца R отведении. Нормальный зубец Q не должен быть зазубрен. В норме амплитуда зубца Q должна быть меньше 2 мм.

Зубец R - обычно основной зубец ЭКГ. Он обусловлен возбуждением желудочков. Амплитуда зубца R в стандартных и усиленных отведениях от конечностей определяется расположением электрической оси сердца.

Зубец S в основном обусловлен конечным возбуждением основания левого желудочка. Это непостоянный зубец ЭКГ, т.е. он может отсутствовать, особенно в отведениях от конечностей. При переходе от правых к левым грудным отведениям отношение R/S постепенно увеличивается. Это связано с постепенным увеличением высоты зубцов R и уменьшением амплитуды зубцов S.

Сегмент ST - это отрезок ЭКГ между концом комплекса QRS и началом зубца Т. При отсутствии зубца S его обозначают нередко сегментом RST, однако чаще и в этих случаях его называют сегментом ST. Сегмент ST соответствует тому периоду сердечного цикла, когда оба желудочка полностью охвачены возбуждением, деполяризованы. Интервал ST и конечная часть желудочкового комплекса - зубец Т - представляют собой отдельные фазы одного и того же процесса реполяризации во время систолы желудочков. Изменения в этих параметрах связывают с обменными и электролитными процессами, с изменением коронарного кровообращения, сократительной активностью миокарда.

Сегмент ST в норме расположен на изолинии, но он может быть несколько приподнятым над изолинией или слегка сниженным. Подъем или снижение сегмента ST определяется по отношению к изолинии, т.е. к интервалу, когда отсутствует электрическая активность. Снижение сегмента ST не должно превышать 0,5 мм. В норме сегмент ST может быть расположен даже на 1,5-2 мм выше изолинии.

Зубец Т регистрируется во время реполяризации желудочков. Это наиболее лабильный зубец ЭКГ. Зубец Т обычно начинается на изолинии, где в него непосредственно переходит сегмент ST. Зубец Т в норме обычно положительный. В большинстве случаев он постепенно поднимается до его вершины и затем возвращается к изолинии, иногда характеризуясь более крутым нисходящим коленом. В норме зубец Т не зазубрен.

В отведениях от конечностей амплитуда зубца Т обычно не превышает 3-6 мм, хотя иногда он достигает и 8 мм. Однако нормативы амплитуды нормальных зубцов Т до сих пор четко не разработаны. Продолжительность зубца Т обычно составляет 0,1 - 0,25 с, но она не имеет большого диагностического значения.

Интервал QT - электрическая систола желудочков - время от начала комплекса QRS до конца зубца Т; он зависит от пола, возраста и частоты ритма. У детей продолжительность интервала QT меньше, чем у взрослых. В норме продолжительность интервала QT составляет 0,35-0,44 с. При соответствующей клинической картине удлинение электрической систолы желудочков является характерным признаком кардиосклероза.

Для выявления грубых изменений в продолжительности интервала QT у данного больного предложены различные показатели, один из которых учитывает зависимость его от частоты ритма (формула Базета): ,

где τQT - длительность интервала QT, которая измеряется непосредственно по сигналу ЭКГ; К - константа, имеющая размерность с-1/2 и равная для мужчин 0,37, для женщин 0,4; τrr - продолжительность сердечного цикла. Формула дает соотношение между длительностью интервала QT и общей продолжительностью сердечного цикла и позволяет определить, каким является интервал QT у данного пациента - нормальным или патологическим. Интервал QT считается патологическим, если значение показателя, вычисленное по формуле (1), больше 0,42 с.

Известна также формула для так называемого систолического показателя SP:

.

Увеличение этого показателя против нормы на 5 % расценивается как признак неполноценности функции сердечной мышцы.

Зубец U - небольшой положительный зубец, изредка регистрируемый вслед за зубцом Т. Амплитуда зубца U обычно увеличивается при урежении ритма. Происхождение зубца U до сих пор точно не известно, и о клиническом значении его также известно мало. Часто трудно четко отделить зубец U от зубца Т. Задачи исследования зубца U ЭКГ обычно относят к области ЭКГ высокого разрешения и вообще анализа тонкой структуры сигнала.

42.Блок – схема есть в лабораторном практикуме 2008 г. Лабораторная работа №3 с 18

Типы электрокардиографов

За последние тридцать лет внешний вид и принцип действия одноканального электрокардиографа, который все еще остается основным аппаратом в больницах, изменились очень мало. Однако в последние годы все шире вводятся в практику новые и радикально отличные от старых моделей типы электрокардиографов.

Автоматический трехканальный электрокардиограф

Если ежедневно необходимо записывать и монтировать большое число ЭКГ, то можно существенно уменьшить затраты труда персонала, применяя автоматические трехканальные электрокардиографы.

Электрокардиографы, обрабатывающие сигналы на ЭВМ

Все более широко используется автоматический анализ ЭКГ на ЭВМ. Этот метод требует, чтобы сигнал ЭКГ от стандартных отведений последовательно передавался к ЭВМ с помощью соответствующих средств; при этом должна также передаваться дополнительная информация о пациенте.

Электрокардиографические системы для испытаний под нагрузкой

Коронарная недостаточность часто не отражается в ЭКГ, если запись производится в состоянии покоя. В испытаниях с упражнениями на двух ступенях на сердечнососудистую систему дается физиологическая нагрузка. Перед записью ЭКГ пациенту предлагают подниматься и спускаться по специальной паре ступеней высотой около 23 см. На этом же принципе основаны и испытания под нагрузкой, во время которых пациент идет с определенной скоростью по бегущей дорожке, наклон которой можно изменять.

43. Идеальный колебательный контур (LC-контур) — электрическая цепь, состоящая из катушки индуктивностью L и конденсатора емкостью C.

В отличие от реального колебательного контура, который обладает электрическим сопротивлением R, электрическое сопротивление идеального контура всегда равно нулю. Следовательно, идеальный колебательный контур является упрощенной моделью реального контура.

На рисунке 1 изображена схема идеального колебательного контура.

Процессы в колебательном контуре

Для выведения контура из положения равновесия зарядим конденсатор так, что на его обкладках будет заряд Qm. С учетом уравнения находим значение напряжения на конденсаторе. Тока в цепи в этом момент времени нет, т.е. i = 0.

После замыкания ключа под действием электрического поля конденсатора в цепи появится электрический ток, сила тока i которого будет увеличиваться с течением времени. Конденсатор в это время начнет разряжаться, т.к. электроны, создающие ток уходят с отрицательной обкладки конденсатора и приходят на положительную. Вместе с зарядом q будет уменьшаться и напряжение u При увеличении силы тока через катушку возникнет ЭДС самоиндукции, препятствующая изменению силы тока. Вследствие этого, сила тока в колебательном контуре будет возрастать от нуля до некоторого максимального значения не мгновенно, а в течение некоторого промежутка времени, определяемого индуктивностью катушки.

Заряд конденсатора q уменьшается и в некоторый момент времени становится равным нулю (q = 0, u = 0), сила тока в катушке достигнет некоторого значения Im.

Без электрического поля конденсатора (и сопротивления) электроны, создающие ток, продолжают свое движение по инерции. При этом электроны, приходящие на нейтральную обкладку конденсатора, сообщают ей отрицательный заряд, электроны, уходящие с нейтральной обкладки, сообщают ей положительный заряд. На конденсаторе начинает появляться заряд q (и напряжение u), но противоположного знака, т.е. конденсатор перезаряжается. Теперь новое электрическое поле конденсатора препятствует движению электронов, поэтому сила тока i начинает убывать. Опять же это происходит не мгновенно, поскольку теперь ЭДС самоиндукции стремится скомпенсировать уменьшение тока и «поддерживает» его. А значение силы тока Im оказывается максимальным значением силы тока в контуре.

Далее сила тока становится равной нулю, а заряд конденсатора достигнет максимального значения Qm (Um).

И снова под действием электрического поля конденсатора в цепи появится электрический ток, но направленный в противоположную сторону, сила тока i которого будет увеличиваться с течением времени. А конденсатор в это время будет разряжаться до нуля. И так далее.

Так как заряд на конденсаторе q (и напряжение u) определяет его энергию электрического поля We а сила тока в катушке i — энергию магнитного поля Wm то вместе с изменениями заряда, напряжения и силы тока, будут изменяться и энергии.

Свободные электромагнитные колебания

Таким образом, в идеальном LC-контуре будут происходить периодические изменения значений силы тока i, заряда q и напряжения u, причем полная энергия контура при этом будет оставаться постоянной. В этом случае говорят, что в контуре возникли свободные электромагнитные колебания.

Свободные электромагнитные колебания в контуре — это периодические изменения заряда на обкладках конденсатора, силы тока и напряжения в контуре, происходящие без потребления энергии от внешних источников.

Таким образом, возникновение свободных электромагнитных колебаний в контуре обусловлено перезарядкой конденсатора и возникновением ЭДС самоиндукции в катушке, которая «обеспечивает» эту перезарядку. Заметим, что заряд конденсатора q и сила тока в катушке i достигают своих максимальных значений Qm и Im в различные моменты времени.

Свободные электромагнитные колебания в контуре происходят по гармоническому закону:

Наименьший промежуток времени, в течение которого LC-контур возвращается в исходное состояние (к начальному значению заряда данной обкладки), называется периодом свободных (собственных) электромагнитных колебаний в контуре.

Период свободных электромагнитных колебаний в LC-контуре определяется по формуле Томсона:

Сточки зрения механической аналогии, идеальному колебательному контуру соответствует пружинный маятник без трения, а реальному — с трением. Вследствие действия сил трения колебания пружинного маятника затухают с течением времени.

Формула Томсона. Английский физик Томсон первым вывел формулу, позволяющую высчитать период электромагнитных колебаний. Формула Томсона

44.Блок-схема генератора незатухающих колебаний есть в лабораторном практикуме 2011г.Лабораторная работа №1.

Терапевтический контур

Генератор электрических колебаний составляет основу многих физиотерапевтических аппаратов. Существенной особенностью этих аппаратов является отдельный колебательный контур, к которому подключаются электроды, накладываемые на больного. Этот контур называют терапевтическим.

Терапевтический контур в целях безопасности больного индуктивно связан с контуром генератора, так как индуктивная связь исключает возможность случайного попадания больного под высокое постоянное напряжение, которое практически всегда имеется в генераторах колебаний.

 

 

В связи с тем, что в терапевтический контур включаются различные объекты, например различные части тела больного, и его электрические параметры могут соответственно изменяться, этот контур должен подстраиваться в резонанс при каждой процедуре. Для этого в нем имеется конденсатор переменной ёмкости.

45. Электромагнитная волна - процесс распространения электромагнитного поля в пространстве.

Электромагнитная волна представляет собой процесс последовательного, взаимосвязанного изменения векторов напряжённости электрического и магнитного полей, направленных перпендикулярно лучу распространения волны, при котором изменение электрического поля вызывает изменения магнитного поля, которые, в свою очередь, вызывают изменения электрического поля.

Одним из важнейших следствий уравнений Максвелла является существование электромагнитных волн. Можно сказать, что для однородной и изотропной среды вдали от зарядов и токов, создающих электромагнитное поле, из уравнений Максвелла следует, что векторы напряженностей Е и Н переменного электромагнитного поля удовлетворяют волновому уравнению типа (154.9):

(162.1)

 

(162.2)

где — оператор Лапласа, v — фазовая скорость.

Всякая функция, удовлетворяющая уравнениям (162.1) и (162.2), описывает некоторую волну. Следовательно, электромагнитные поля действительно могут существовать в виде электромагнитных волн. Фазовая скорость электромагнитных волн определяется выражением

(162.3)

где с = , и — соответственно электрическая и магнитная постоянные, e и m — соответственно электрическая и магнитная проницаемости среды.

В вакууме (при e=1 и m=l) скорость распространения электромагнитных волн совпадает со скоростью с. Так как em > 1, то скорость распространения электромагнитных волн в веществе всегда меньше, чем в вакууме.

При вычислении скорости распространения электромагнитного поля по формуле (162.3) получается результат, достаточно хорошо совпадающий с экспериментальными данными, если учитывать зависимость e и m от частоты. Совпадение же размерного коэффициента в (162.3) со скоростью распространения света в вакууме указывает на глубокую связь между электромагнитными и оптическими явлениями, позволившую Максвеллу создать электромагнитную теорию света, согласно которой свет представляет собой электромагнитные волны.

Следствием теории Максвелла является поперечность электромагнитных волн: векторы Е и Н напряженностей электрического и магнитного полей волны взаимно перпендикулярны (на рис. 227 показана моментальная «фотография» плоской электромагнитной волны) и лежат в плоскости, перпендикулярной вектору v скорости распространения волны, причем векторы Е, Н и v образуют правовинтовую систему. Из уравнений Максвелла следует также, что в электромагнитной волне векторы Е и Н всегда колеблются в одинаковых фазах (см. рис. 227), причем мгновенные значения Е и Н в любой точке связаны соотношением

(162.4)

Следовательно, Е и Н одновременно достигают максимума, одновременно обращаются в нуль и т. д. От уравнений (162.1) и (162.2) можно перейти к уравнениям

(162.5)

(162.6)

где соответственно индексы у и z при Е и Н подчеркивают лишь то, что векторы Е и Н направлены вдоль взаимно перпендикулярных осей y и z.

Уравнениям (162.5) и (162.6) удовлетворяют, в частности, плоские монохроматические электромагнитные волны (электромагнитные волны одной строго определенной частоты), описываемые уравнениями

(162.7)

(162.8)

где E0 и Н0 — соответственно амплитуды напряженностей электрического и магнитного полей волны, w — круговая частота волны, k=w/v — волновое число, j — начальные фазы колебаний в точках с координатой х=0. В уравнениях (162.7) и (162.8) j одинаково, так как колебания электрического и магнитного векторов в электромагнитной волне происходят в одинаковых фазах.

Электромагнитные волны, электромагнитные колебания, распространяющиеся в пространстве с конечной скоростью. Существование Э. в. было предсказано М. Фарадеем в 1832. Дж. Максвелл в 1865 теоретически показал, что электромагнитные колебания не остаются локализованными в пространстве, а распространяются в вакууме со скоростью света во все стороны от источника. Из того обстоятельства, что скорость распространения Э. в. в вакууме равна скорости света, Максвелл сделал вывод, что свет представляет собой Э. в. В 1888 максвелловская теория Э. в. получила подтверждение в опытах Г. Герца, что сыграло решающую роль для её утверждения.

Вектор Пойнтинга (также вектор Умова — Пойнтинга) — вектор плотности потока энергии электромагнитного поля. Вектор Пойнтинга S можно определить через векторное произведение двух векторов:

(в системе СГС),

(в системе СИ),

где E и H — вектора напряжённости электрического и магнитного полей соответственно.

Этот вектор по модулю равен количеству энергии, переносимой через единичную площадь, нормальную к S, в единицу времени. Своим направлением вектор определяет направление переноса энергии. Поскольку тангенциальные к границе раздела двух сред компоненты E и H непрерывны, то вектор S непрерывен на границе двух сред.

 

Электротерапия (синоним электролечение) -- методы физиотерапии, основанные на использовании дозированного воздействия на организм электрических токов, электрических, магнитных или электромагнитных полей.

46

1. Методы, основанные на использовании электрических токов различных параметров (постоянный, переменный импульсный): гальванизация, лекарственный электрофорез, электросон, интерференцтерапия, электростимуляция, флюктуоризация, ультратонотерапия.
2. Методы, основанные на использовании электрических полей: франклинизация, ультравысокочастотная терапия, <


Поделиться с друзьями:

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.127 с.