Что означает слово «понимать», по В. Гейзенбергу? — КиберПедия 

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Что означает слово «понимать», по В. Гейзенбергу?

2017-12-10 128
Что означает слово «понимать», по В. Гейзенбергу? 0.00 из 5.00 0 оценок
Заказать работу

В заключении данного раздела приведем слова из книги Гей-зенберга «Часть и целое» о том, что же означает понимание как тако­вое.

«Понимать» — это, по-видимому, означает овладеть представле­ниями, концепциями, с помощью которых мы можем рассматривать огромное множество различных явлений в их целостной связи, ины­ми словами, «охватить» их. Наша мысль успокаивается, когда мы уз­наем, что какая-нибудь конкретная, кажущаяся запутанной ситуа­ция есть лишь частное следствие чего-то более общего, поддающего­ся тем самым более простой формулировке. Сведение пестрого многообразия явлений к общему и простому первопринципу или, как сказали бы греки, «многого» к «единому», и есть как раз то самое, что мы называем «пониманием». Способность численно предсказать со­бытие часто является следствием понимания, обладания правильны­ми понятиями, но она непосредственно не тождественна пониманию» (Гейзенберг В. Физика и философия. Часть и целое.- М., 1989.- С. 165).

Связать с толкованием физики как науки, стремящейся объяснять многообразие мира путем сведения его к единому, простому «первоначалу». Обратить внимание: 1. «понимать» – овладеть определенными представлениями и концепциями; 2. с помощью этих представлений и концепций получаем возможность множество разнообразных явлений рассматривать в их единой, целостной связи – то есть, получаем возможность «охватить» эти явления; 3. когда понимаем, тогда наша мысль «успокаивается»: мы узнаем, что некоторая конкретная запутанная ситуация есть лишь частное следствие чего-то более общего. 4. Это более общее поддается простой формулировке. 5. Пониманиеи наступает, когда мы сведем пестрое многообразие простому первопринципу. Т.е. многое – к единому. 6. Способность численно предсказать событие есть следствие понимания, но не тождественно пониманию. Последний пункт – прокомментировать: до того, как численно предсказывать события (с чем, собственно, и связывают часто научную деятельность), надо выработать ПОНИМАНИЕ. А оно не вырабатывается исключительно навыками совершения «научной профессиональной деятельности» (чему и учат в вузах). ПОНИМАНИЕ возникает в ФИЛОСОФСТВОВАНИИ (и через ФИЛОСОФСТВОВАНИЕ), которое способно из материала культуры, «выплавить» представление о первоначале, о первопринципе, дающем возможность «охватить» новые, «странные» явления мира.

 


[1] ФИЗИКА (греч. ta physika, от physis — природа), наука о природе, изучающая простейшие и вместе с тем наиболее общие свойства материального мира. По изучаемым объектам физика подразделяется на физику элементарных частиц, атомных ядер, атомов, молекул, твердого тела, плазмы и т. д. К основным разделам теоретической физики относятся: механика, электродинамика, оптика, термодинамика, статистическая физика, теория относительности, квантовая механика, квантовая теория поля.

Физика начала развиваться еще до н. э. (Демокрит, Архимед и др.); в 17 в. создается классическая механика (И. Ньютон); к кон. 19 в. было в основном завершено формирование классической физики. В нач. 20 в. в физике происходит революция, она становится квантовой (М. Планк, Э. Резерфорд, Н. Бор). В 20-е гг. была разработана квантовая механика — последовательная теория движения микрочастиц (Л. де Бройль, Э. Шредингер, В. Гейзенберг, В. Паули, П. Дирак). Одновременно (в нач. 20 в.) появилось новое учение о пространстве и времени — теория относительности (А. Эйнштейн), физика делается релятивистской. Во 2-й пол. 20 в. происходит дальнейшее существенное преобразование физики, связанное с познанием структуры атомного ядра, свойств элементарных частиц (Э. Ферми, Р. Фейнман, М. Гелл-Ман и др.), конденсированных сред (Д. Бардин, Л. Д. Ландау, И. Н. Боголюбов и др.).

Физика стала источником новых идей, преобразовавших современную технику: ядерная энергетика (Н. В. Курчатов), квантовая электроника (Н. Г. Басов, А. М. Прохоров и Ч. Таунс), микроэлектроника, радиолокация и др. возникли и развились в результате достижений физики.

 

[2] ЭТАЛОН (франц. etalon),

1) мера или измерительный прибор, служащий для воспроизведения, хранения и передачи единиц какой-либо величины. Эталон, утвержденный в качестве исходного для страны, называется Государственным эталоном.

2) (В переносном смысле) — мерило, образец.

 

[3] РЕДУКЦИОНИЗМ (от лат. reductio), методологический принцип, согласно которому сложные явления могут быть полностью объяснены на основе законов, свойственных более простым (напр., биологические явления — с помощью физических и химических законов; социологические — с помощью биологических и т. п.). Редукционизм абсолютизирует принцип редукции (сведения) сложного к более простому, игнорируя специфику более высоких уровней организации. Вместе с тем обоснованная редукция может быть плодотворной (напр., планетарная модель атома).

 

[4] ЭЙНШТЕЙН (Einstein) Альберт (1879-1955), физик-теоретик, один из основателей современной физики, иностранный член-корреспондент РАН (1922) и иностранный почетный член АН СССР (1926). Родился в Германии, с 1893 жил в Швейцарии, с 1914 в Германии, в 1933 эмигрировал в США. Создал частную (1905) и общую (1907-16) теории относительности. Автор основополагающих трудов по квантовой теории света: ввел понятие фотона (1905), установил законы фотоэффекта, основной закон фотохимии (закон Эйнштейна), предсказал (1917) индуцированное излучение. Развил статистическую теорию броуновского движения, заложив основы теории флуктуаций, создал квантовую статистику Бозе — Эйнштейна. С 1933 работал над проблемами космологии и единой теории поля. В 30-е гг. выступал против фашизма, войны, в 40-е — против применения ядерного оружия. В 1940 подписал письмо президенту США, об опасности создания ядерного оружия в Германии, которое стимулировало американские ядерные исследования. Один из инициаторов создания государства Израиль. Нобелевская премия (1921, за труды по теоретической физике, особенно за открытие законов фотоэффекта).

 

 

[5] ГАЛИЛЕЙ (Galilei) Галилео (1564-1642), итальянский ученый, один из основателей точного естествознания. Боролся против схоластики, считал основой познания опыт. Заложил основы современной механики: выдвинул идею об относительности движения, установил законы инерции, свободного падения и движения тел по наклонной плоскости, сложения движений; открыл изохронность колебаний маятника; первым исследовал прочность балок. Построил телескоп с 32-кратным увеличением и открыл горы на Луне, 4 спутника Юпитера, фазы у Венеры, пятна на Солнце. Активно защищал гелиоцентрическую систему мира, за что был подвергнут суду инквизиции (1633), вынудившей его отречься от учения Н. Коперника. До конца жизни Галилей считался «узником инквизиции» и принужден был жить на своей вилле Арчетри близ Флоренции. В 1992 папа Иоанн Павел II объявил решение суда инквизиции ошибочным и реабилитировал Галилея.

 

[6] «... Степень скорости, обнаруживаемая телом, ненарушимо лежит в самой его природе, в то время как причины ускорения или замедления являются внешними; это можно заметить лишь на горизонтальной плоскости, ибо при движении по наклонной плоскости вниз наблюдается ускорение, а при движении вверх – замедление. Отсюда следует, что движение по горизонтали является вечным, ибо если оно является равномерным, то оно ничем не ослабляется, не замедляется, не ослабляется» (Из: Г. Галилей. Беседы и математические доказательства, касающиеся двух новых отраслей науки, относящихся к механике и местному движению. Опубл. В 1638 году.) - Цит. по: Потеев М.И. Концепции современного естествознания – СПб.: Издательство «Питер», 1999. – С.55.

 

[7] МЕХАНИКА (от греч. mechanike — искусство построения машин), наука о механическом движении материальных тел (т. е. изменении с течением времени взаимного положения тел или их частей в пространстве) и взаимодействиях между ними. В основе классической механики лежат Ньютона законы. Методами механики изучаются движения любых материальных тел (кроме микрочастиц) со скоростями, малыми по сравнению со скоростью света. Движения тел со скоростями, близкими к скорости света, рассматриваются в относительности теории, а движение микрочастиц — в квантовой механике. В зависимости от того, движение каких объектов рассматривается, различают механику материальной точки и системы материальных точек, механику твердого тела, механику сплошной среды. Механика разделяется на статику, кинематику и динамику. Законы механики используются для расчетов машин, механизмов, строительных сооружений, транспортных средств, космических летательных аппаратов и т. п. Основоположники механики — Г. Галилей, И. Ньютон и др.

 

[8] НЬЮТОНА ЗАКОНЫ механики, три закона, лежащие в основе т. н. классической механики. Сформулированы И. Ньютоном в 1687. Первый закон: всякое тело пребывает в состоянии покоя или равномерного прямолинейного движения до тех пор, пока действующие на него силы не изменят это состояние. Второй закон: произведение массы тела на его ускорение равно действующей силе, а направление ускорения совпадает с направлением силы. Третий закон: действию всегда соответствует равное и противоположно направленное противодействие; или: действия двух тел друг на друга всегда равны по величине и направлены в противоположные стороны.

 

[9] НЬЮТОН (Newton) Исаак (1643-1727), английский математик, механик, астроном и физик, создатель классической механики, член (1672) и президент (с 1703) Лондонского королевского общества. Фундаментальные труды «Математические начала натуральной философии» (1687) и «Оптика» (1704). Разработал (независимо от Г. Лейбница) дифференциальное и интегральное исчисления. Открыл дисперсию света, хроматическую аберрацию, исследовал интерференцию и дифракцию, развивал корпускулярную теорию света, высказал гипотезу, сочетавшую корпускулярные и волновые представления. Построил зеркальный телескоп. Сформулировал основные законы классической механики. Открыл закон всемирного тяготения, дал теорию движения небесных тел, создав основы небесной механики. Пространство и время считал абсолютными. Работы Ньютона намного опередили общий научный уровень его времени, были малопонятны современникам. Был директором Монетного двора, наладил монетное дело в Англии. Известный алхимик, Ньютон занимался хронологией древних царств. Теологические труды посвятил толкованию библейских пророчеств (большей частью не опубликованы).

 

[10] КОПЕРНИК (Kopernik, Copernicus) Николай (1473-1543), польский астроном, создатель гелиоцентрической системы мира. Совершил переворот в естествознании, отказавшись от принятого в течение многих веков учения о центральном положении Земли. Объяснил видимые движения небесных светил вращением Земли вокруг оси и обращением планет (в т. ч. Земли) вокруг Солнца. Свое учение изложил в сочинении «Об обращениях небесных сфер» (1543), запрещенном католической церковью с 1616 по 1828.

 

[11] БРАГЕ (Brahe) Тихо (1546-1601), датский астроном, реформатор практической астрономии. На построенной им в 1576 обсерватории «Ураниборг» св. 20 лет вел определения положений светил с наивысшей для того времени точностью. Открыл 2 неравенства в движении Луны; доказал, что кометы — небесные тела, более далекие, чем Луна; составил каталог звезд, таблицы рефракции и др. На основе его наблюдений Марса И. Кеплер вывел законы движения планет.

 

[12] КЕПЛЕР (Kepler) Иоганн (1571-1630), немецкий астроном, один из творцов астрономии нового времени. Открыл законы движения планет (законы Кеплера), на основе которых составил планетные таблицы (т. н. Рудольфовы). Заложил основы теории затмений. Изобрел телескоп, в котором объектив и окуляр — двояковыпуклые линзы.

 

[13] КЕПЛЕРА ЗАКОНЫ, три закона движения планет относительно Солнца, установлены как обобщение наблюдательных данных И. Кеплером в нач. 17 в. 1-й Кеплера закон: каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце. 2-й Кеплера закон: каждая планета движется в плоскости, проходящей через центр Солнца, причем площадь сектора орбиты, описанная радиусом-вектором планеты, изменяется пропорционально времени. 3-й Кеплера закон: квадраты времен обращения планеты вокруг Солнца относятся как кубы их средних расстояний от Солнца. Кеплера законы были объяснены и уточнены на основе закона тяготения Ньютона.

 

[14] ГАЛИЛЕЯ ПРИНЦИП ОТНОСИТЕЛЬНОСТИ в классической механике Ньютона, устанавливает, что во всех инерциальных системах отсчета любой механический процесс протекает одинаково (при одинаковых начальных условиях).

 

[15] ИНЕРЦИАЛЬНАЯ СИСТЕМА ОТСЧЕТА, система отсчета, в которой справедлив закон инерции: материальная точка, на которую не действуют никакие силы, находится в состоянии покоя или равномерного прямолинейного движения. Любая система отсчета, движущаяся относительно инерциальной системы отсчета поступательно, равномерно и прямолинейно, также является инерциальной системой отсчета. Все инерциальные системы отсчета равноправны, т. е. во всех таких системах законы физики одинаковы.

СИСТЕМА ОТСЧЕТА в механике, совокупность системы координат и синхронизированных часов, связанных с телом, по отношению к которому изучается движение (или равновесие) каких-нибудь других материальных точек или тел. В задачах динамики преимущественную роль играют инерциальные системы отсчета.

 

[16] ОТНОСИТЕЛЬНОСТИ ТЕОРИЯ Эйнштейна, физическая теория, рассматривающая пространственно-временные свойства физических процессов. Т. к. закономерности, устанавливаемые теорией относительности, — общие для всех физических процессов, то обычно о них говорят просто как о свойствах пространства-времени. Эти свойства зависят от полей тяготения в данной области пространства-времени. Теория, описывающая свойства пространства-времени в приближении, когда полями тяготения можно пренебречь, называется специальной или частной теорией относительности, или просто теорией относительности (создана А. Эйнштейном в 1905). Свойства пространства-времени при наличии полей тяготения исследуются в общей теории относительности, называемой также теорией тяготения Эйнштейна (создана в 1915-16; см. Тяготение). Физические явления, описываемые теорией относительности, называются релятивистскими и проявляются при скоростях v движения тел, близких к скорости света в вакууме с.

В основе теории относительности лежат 2 положения: относительности принцип, означающий равноправие всех инерциальных систем отсчета (и. с. о.), и постоянство скорости света в вакууме, ее независимость от скорости движения источника света. Эти 2 постулата определяют формулы перехода от одной инерциальной системы отсчета к другой — преобразования Лоренца, для которых характерно, что при таких переходах изменяются не только пространственные координаты, но и моменты времени (относительность времени). Из преобразований Лоренца получаются основные эффекты специальной теории относительности: существование предельной скорости передачи любых взаимодействий — максимальной скорости, до которой можно ускорить тело, совпадающей со скоростью света в вакууме; относительность одновременности (события, одновременные в одной инерциальной системе отсчета, в общем случае не одновременны в другой); замедление течения времени в быстро движущемся теле (физические процессы в теле, движущемся со скоростью v относительно некоторой инерциальной системы отсчета, протекают в 1/Ö 1-v2/c2 раз медленнее, чем в данной инерциальной системе отсчета) и сокращение продольных — в направлении движения — размеров тел (во столько же раз) и др. Масса m тела растет с увеличением его скорости v по формуле m = m0/Ö 1-v2/c2, где m 0— масса покоя тела. Полная энергия движущегося тела определяется соотношением Эйнштейна E = mc 2; покоящееся тело обладает энергией E = m 0. c 2. Все эти закономерности теории относительности надежно подтверждены на опыте. Теория относительности выявила ограниченность представлений классической физики об «абсолютных» пространстве и времени, неправомерность их обособления от движущейся материи; она дает более точное, по сравнению с классической механикой, отображение объективных процессов реальной действительности.

 

[17] ЛОРЕНЦА ПРЕОБРАЗОВАНИЯ (в относительности теории), преобразования координат и времени какого-либо события при переходе от одной инерциальной системы отсчета к другой. Получены в 1904 Х. А. Лоренцом.

 

[18] ЛОРЕНЦ (Лорентц) (Lorentz) Хендрик Антон (1853-1928), нидерландский физик, иностранный член-корреспондент Петербургской АН (1910) и иностранный почетный член АН СССР, (1925). Труды по теоретической физике. Создал классическую электронную теорию, с помощью которой объяснил многие электрические и оптические явления, в т. ч. эффект Зеемана. Разработал электродинамику движущихся сред. Вывел преобразования, названные его именем. Близко подошел к созданию теории относительности. Нобелевская премия (1902, совместно с П. Зееманом).

 

[19] МАЙКЕЛЬСОНА ОПЫТ доказал независимость скорости света от движения Земли (А. А. Майкельсон, 1881). В классической физике опыт Майкельсона не нашел объяснения; в относительности теории постоянство скорости света во всех инерциальных системах отсчета принимается как постулат.

СВЕТ, в узком смысле — электромагнитные волны в интервале частот, воспринимаемых человеческим глазом (4,0 х1014—7,5 х 1014Гц). Длина волн от 760 нм (красный) до 380 нм (фиолетовый). В широком смысле — то же, что и оптическое излучение.

НАНО... (от греч. nanos — карлик), приставка для образования наименования дольных единиц, равных одной миллиардной доле исходных единиц. Обозначения: н, n. Пример: 1 нм = 10-9м.

СКОРОСТЬ СВЕТА, скорость распространения электромагнитных волн. В вакууме скорость света c = 299 792 458 ±1,2 м/с (на 1980). Это — предельная скорость распространения любых физических воздействий (см. Относительности теория). В среде скорость света зависит от его частоты (длины волны). Различают фазовую скорость n = c/n2(n — показатель преломления) и групповую — скорость распространения энергии в квазимонохроматической волне.

СКОРОСТЬ, характеристика движения точки (тела), численно равная при равномерном движении отношению пройденного пути s к промежутку времени t, т. е. n = s / t. При вращательном движении тела пользуются понятием угловой скорости. Вектор скорости направлен по касательной к траектории тела. Термин «скорость» применяется также для характеристики изменения во времени различных процессов, напр. скорости химических реакций, скорости рекомбинации, релаксации.

 

[20] СИММЕТРИЯ (от греч. symmetria — соразмерность), в широком смысле — инвариантность (неизменность) структуры, свойств, формы материального объекта относительно его преобразований (т. е. изменений ряда физических условий). Симметрия лежит в основе законов сохранения.

СОХРАНЕНИЯ ЗАКОНЫ, законы, согласно которым численные значения некоторых физических величин не изменяются с течением времени при различных процессах. Важнейшие законы сохранения — законы сохранения энергии, импульса, момента количества движения, электрического заряда. Кроме этих строгих законов сохранения существуют приближенные законы сохранения, которые справедливы лишь для определенного круга процессов; напр., сохранение четности нарушается лишь слабыми взаимодействиями.

 

 

[21] СПЕЦИАЛЬНАЯ ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ (частная теория относительности), см. Относительности теория.

 

[22] ГРАВИТАЦИОННОЕ ПОЛЕ (поле тяготения), поле физическое, создаваемое любыми физическими объектами; через гравитационное поле осуществляется гравитационное взаимодействие тел.

ПОЛЕ ФИЗИЧЕСКОЕ, особая форма материи, система с бесконечным числом степеней свободы. К полям физическим относятся электромагнитные и гравитационные поля, поле ядерных сил, а также волновые (квантованные) поля, соответствующие различным частицам (напр., электрон-позитронное поле). Источниками поля физического являются частицы (напр., для электромагнитного поля — заряженные частицы). Создаваемые частицами поля физические переносят (с конечной скоростью) взаимодействие между соответствующими частицами (в квантовой теории взаимодействие обусловлено обменом квантами поля между частицами).

СТЕПЕНИ СВОБОДЫ, 1) в механике — независимые между собой возможные перемещения механической системы. Число степеней свободы зависит от числа материальных частиц, образующих систему, и числа и характера наложенных на систему связей механических. Так, свободное твердое тело имеет 6 степеней свободы: 3 поступательных — вдоль трех осей декартовой системы координат, и 3 вращательных — вокруг этих осей.

2) В термодинамике — параметры термодинамической системы (обычно температура, давление и др.), изменение которых (в определенных пределах) не нарушает термодинамического равновесия системы.

ВОЗМОЖНЫЕ ПЕРЕМЕЩЕНИЯ (виртуальные перемещения), бесконечно малые перемещения, которые могут совершать точки механической системы из занимаемого ими в данный момент времени положения, не нарушая наложенных на систему связей (см. Связи механические).

СВЯЗИ МЕХАНИЧЕСКИЕ, ограничения, налагаемые на положение или движение механической системы. Обычно механические связи осуществляются с помощью каких-нибудь тел; примеры механических связей — поверхность, по которой скользит или катится тело; нить, на которой подвешен груз, и т. п. Если механические связи налагают ограничения только на положения (или перемещения за время движения) точек и тел системы, они называются геометрическими. Механические связи, для которых сумма элементарных работ всех реакций связей на любом возможном перемещении системы равна нулю, называются идеальными (напр., поверхность, лишенная трения).

 

[23] См. сноску 14.

 

[24] МАКСВЕЛЛА УРАВНЕНИЯ, основные уравнения классической макроскопической электродинамики, описывающие электромагнитные явления в произвольных средах и в вакууме. Уравнения Максвелла получены Дж. К. Максвеллом в 60-х гг. 19 в. в результате обобщения найденных из опыта законов электрических и магнитных явлений.

МАКСВЕЛЛ (Maxwell) Джеймс Клерк (Clerk) (1831-79), английский физик, создатель классической электродинамики, один из основоположников статистической физики, организатор и первый директор (с 1871) Кавендишской лаборатории. Развивая идеи М. Фарадея, создал теорию электромагнитного поля (уравнения Максвелла); ввел понятие о токе смещения, предсказал существование электромагнитных волн, выдвинул идею электромагнитной природы света. Установил статистическое распределение, названное его именем. Исследовал вязкость, диффузию и теплопроводность газов. Показал, что кольца Сатурна состоят из отдельных тел. Труды по цветному зрению и колориметрии (диск Максвелла), оптике (эффект Максвелла), теории упругости (теорема Максвелла, диаграмма Максвелла — Кремоны), термодинамике, истории физики и др.

 

 

[25] КОНТИНУУМ (от лат. continuum — непрерывное) в математике, непрерывная совокупность, напр. совокупность всех точек отрезка на прямой или всех точек прямой, эквивалентная совокупности всех действительных чисел.

 

[26] АННИГИЛЯЦИЯ пары (от позднелат. annihilatio — уничтожение, исчезновение), один из видов превращений элементарных частиц, происходящий при столкновении частицы с античастицей. При аннигиляции частица и античастица исчезают, превращаясь в др. частицы, число и сорт которых лимитируются сохранения законами. Напр., при малых энергиях столкновения в процессе аннигиляции пары электрон-позитрон возникают фотоны, а пары нуклон-антинуклон — в основном пи-мезоны. Процесс, обратный аннигиляции, — пары рождение.

АНТИЧАСТИЦЫ, элементарные частицы, имеющие те же массу, спин, время жизни и некоторые другие внутренние характеристики, что и их «двойники»-частицы, но отличающиеся от частиц знаками электрического заряда и магнитного момента, барионного заряда, лептонного заряда, странности и др. Все элементарные частицы, кроме абсолютно нейтральных, имеют свои античастицы. При столкновении частицы и античастицы происходит их аннигиляция.

 

 

[27] ЕДИНАЯ ТЕОРИЯ ПОЛЯ, квантовая теория поля, в которой различные формы материи (элементарные частицы) должны выступать как разные проявления единого поля. Построена теория электрослабого взаимодействия; существуют модели великого объединения; предпринимаются попытки включения в схему и гравитационного взаимодействия на основе суперсимметрии.

ЭЛЕКТРОСЛАБОЕ ВЗАИМОДЕЙСТВИЕ, единая теория слабого и электромагнитного взаимодействий кварков и лептонов, осуществляемых посредством обмена четырьмя частицами: безмассовыми фотонами (электромагнитное взаимодействие) и тяжелыми промежуточными векторными бозонами (слабое взаимодействие). Создана в кон. 60-х гг. С. Вайнбергом, Ш. Глэшоу, А. Саламом.

ВЕЛИКОЕ ОБЪЕДИНЕНИЕ, теоретические модели квантовой теории поля, в которых делаются попытки описания на единой основе слабого, электромагнитного и сильного взаимодействий. Объединение взаимодействий происходит при энергиях (в системе центра инерции частиц) ~1014ГэВ (или на расстояниях ~10-28см). Ряд моделей предсказывает нестабильность протона со временем жизни 1032лет.

СУПЕРСИММЕТРИЯ (от супер... и симметрия), гипотетическая симметрия, объединяющая в одну группу (супермультиплет) частицы с разными спинами, как с целыми (бозоны), так и с полуцелыми (фермионы), т. е. подчиняющиеся разным квантовым статистикам. Должна проявляться при сверхвысоких энергиях. По современным представлениям является основой для построения единой теории всех взаимодействий, включая гравитационное.

 

[28] ТАХИОНЫ (от греч. tachys — быстрый), гипотетические частицы, всегда движущиеся со скоростью, превышающей скорость света в вакууме. Формально существование тахионов не противоречит теории относительности, но приводит к затруднениям с выполнением причинности принципа. Экспериментально тахионы не обнаружены.

ПРИЧИННОСТИ ПРИНЦИП в физике, устанавливает допустимые пределы влияния физических событий друг на друга; причинности принцип исключает влияние данного события на все прошедшие, а также требует отсутствия взаимного влияния событий, пространственное расстояние между которыми столь велико, а временной интервал между ними столь мал, что они не могут быть связаны световым (или каким-нибудь другим) сигналом.

 

 


Поделиться с друзьями:

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.062 с.