История развитая тепловых двигателей. — КиберПедия 

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

История развитая тепловых двигателей.

2017-12-10 258
История развитая тепловых двигателей. 0.00 из 5.00 0 оценок
Заказать работу

Первая работоспособная паросиловая установка была предложена Томасом Ньюкоменом (кузнец, изобретатель) — в 1712 г.

Российский изобретатель И.И. Ползунов в 1763 г., разработал проект пароатмосферной машины для привода кузнечных мехов.

Изобретателем и создате­лем паровой машины (поршневого парового двигателя) счита­ют шотландца Джеймса Уатта (1736-1819).

Патент на машину простого действия был получен Д. Уаттом в 1769 г.

Заслуги Джеймса Уатта в технике и энергетике настолько велики, что во всем мире единица измерения мощности была названа в его честь Watt[W] (по-русски принято читать и обозначать это наименование как «Ватт» [Вт]).

Паровая турбина. Работоспособная активная паровая турбина была изобретена в 1883-1889 гг. шведским инженером Густавом де Лавалем (1845-1913)

Двигатели внутреннего сгорания

Теоретической основой для создания такого двигателя мог служить идеальный термодинамический цикл процесса преобра­зования тепловой энергии в механическую работу, предложен­ный французским инженером Сади Карно в 1824 г.

Первыми работоспособными Д.В.С. считают­ся двигатели, работавшие на светильном газе, которые создал Жан-Этьен Ленуар во Франции. Он получил патент в 1860 г

Маленькие двигатели Ленуара (с мощностью по­рядка 0,5-1 кВт) сразу завоевали большую популярность в Ев­ропе, к.п.д. двигателя оценивался на уровне 3%.

Двигателем Ленуара заинтересовался немецкий изобретатель-самоучка, Николаус Аугуст Отто (1832-1891). В 1866 г. ему удалось получить пер­вый патент на усовершенствованный газовый двигатель. В 1867 г. маленький мотор Отто был показан на Всемирной Парижской выставке и получил золотую медаль, несмотря на то, что в экспо­зиции выставки было представлено еще не менее полутора десят­ков газовых двигателей разных изобретателей — моторчик Отто работал экономичнее всех других. Отто со своими партнерами организовал производство двигателей. Успеху фирмы способ­ствовало приглашение двух талантливых немецких инженеров. Их имена известны и сегодня — это были Готлиб Даймлер и Вильгельм Майбах. До сих пор в Германии существуют фирмы и автомобильные заводы, ими организованные.

В 1883 г. Г. Даймлер. построил четырехтактный двигатель внутреннего сгорания, в котором вместо светильного газа использовалось более компак­тное жидкое топливо — бензин. Горючая смесь в виде паров бензина и воздуха образовывалась в специально разработан­ном им устройстве карбюраторе.

Вскоре, поставив карбюраторный бензиновый двигатель на повозку, Даймлер построил первый - настоящий автомобиль. В 1891 г. завод Г.Даймлера построил первый в Европе неболь­шой промышленный локомотив автомобильного типа с зубча­той передачей между двигателем и колесами. Его мощность была всего 4 л.с. С 1893 г. автомобильный завод Даймлера строил и самоходные рельсовые вагоны — автомотрисы (рель­совые автобусы) для немецких железных дорог.

Дизельные двигатели внутреннего сгорания. В конце 1897 гнемецкий инженер Рудольф Дизель, создал двигатель внутреннего сгорания, в котором тяжелое жидкое топливо самовоспламенялось в цилиндре от высокой температуры сжатого в нем воздуха. С тех пор такие двигатели называют по имени их созда­теля - дизелями. Принцип подачи топлива, был глав­ным элементом в изобретении Дизеля.

В 1896 г. российский специалист Г.В. Тринклер, работавший в Нижнем Новгороде, построил бескомпрессорный двигатель внутреннего сгорания высокого сжатия. Тринклер, сделав заявку в 1899 г., получил патент только в 1904 г. По этому «смешанному» циклу (циклу Тринклера) и работают все современные бескомпрессор­ные дизельные двигатели.

Газотурбинные установки.

Одним из первых создателей промышленного образца ГТУ был русский инженер П.Д.Кузьминский. В период с 1894 по 1900 г.г. им была спроектирована и построена ГТУ со сгора­нием топлива при постоянном давлении.

В 1900-1904 гг. была изготовлена ГТУ немецким инженером Штольцем, но в процессе испытаний установка не развивала мощности, необходимой даже для вращения компрессора. В 1906 г. французскими инженерами Арманго и Лемалем был построен ГТУ мощностью 300 кВт, но ее КПД был очень низок.

В 1908 г, русский инженер В.В.Караводин постро­ил ГТУ со сгоранием топлива при постоянном объеме. КПД этой установки не превышал 2,4%.

 

 

Теоретические циклы поршневых двигателей внутреннего сгорания

 

В теоретическом цикле в отличии от действительных отсутствуют потери теплоты, за исключением неизбежной отдачи теплоты холодному источнику в соответствии со вторым законом термодинамики. Теоретические циклы совершаются при соблюдений следующих условий:

- цикл является замкнутым (обратимым) и протекает с постоянным количеством одного и того же рабочего тела, в качестве которого используется идеальный газ;

- процесс сгорания топлива в цилиндре заменен мгновенным подводом теплоты от постороннего горячего источника, а процесс выпуска отработавших газов мгновенным отводом теплоты в холодный источник;

- процесс сжатия и расширения протекают без теплообмена с внешней средой, т.е.принимаются адиабатными;

- теплоемкость рабочего тела на протяжении всего цикла считается постоянной, не зависящей от температуры.

- Тепловым двигателем называется устройство, способное превращать полученное количество теплоты в механическую работу. Механическая работа в тепловых двигателях производится в процессе расширения некоторого вещества, которое называется рабочим телом. В качестве рабочего тела обычно используются газообразные вещества (пары бензина, воздух, водяной пар). Рабочее тело получает (или отдает) тепловую энергию в процессе теплообмена с телами, имеющими большой запас внутренней энергии. Эти тела называются тепловыми резервуарами.

- Как следует из первого закона термодинамики, полученное газом количество теплоты Q полностью превращается в работу A при изотермическом процессе, при котором внутренняя энергия остается неизменной (Δ U = 0):

A = Q.

- Но такой однократный акт преобразования теплоты в работу не представляет интереса для техники. Реально существующие тепловые двигатели (паровые машины, двигатели внутреннего сгорания и т. д.) работают циклически. Процесс теплопередачи и преобразования полученного количества теплоты в работу периодически повторяется. Для этого рабочее тело должно совершать круговой процесс или термодинамический цикл, при котором периодически восстанавливается исходное состояние. Круговые процессы изображаются на диаграмме (p, V) газообразного рабочего тела с помощью замкнутых кривых (рис. 3.11.1). При расширении газ совершает положительную работу A 1, равную площади под кривой abc, при сжатии газ совершает отрицательную работу A 2, равную по модулю площади под кривой cda. Полная работа за цикл A = A 1 + A 2 на диаграмме (p, V) равна площади цикла. Работа A положительна, если цикл обходится по часовой стрелке, и A отрицательна, если цикл обходится в противоположном направлении.

Рисунок 3.11.1.

- Общее свойство всех круговых процессов состоит в том, что их невозможно провести, приводя рабочее тело в тепловой контакт только с одним тепловым резервуаром. Их нужно, по крайней мере, два. Тепловой резервуар с более высокой температурой называют нагревателем, а с более низкой – холодильником. Совершая круговой процесс, рабочее тело получает от нагревателя некоторое количество теплоты Q 1 > 0 и отдает холодильнику количество теплоты Q 2 < 0. Полное количество теплоты Q, полученное рабочим телом за цикл, равно

Q = Q 1 + Q 2 = Q 1 – | Q 2|.

- При обходе цикла рабочее тело возвращается в первоначальное состояние, следовательно, изменение его внутренней энергии равно нулю (Δ U = 0). Согласно первому закону термодинамики,

Δ U = QA = 0.

- Отсюда следует:

A = Q = Q 1 – | Q 2|.

- Работа A, совершаемая рабочим телом за цикл, равна полученному за цикл количеству теплоты Q. Отношение работы A к количеству теплоты Q 1, полученному рабочим телом за цикл от нагревателя, называется коэффициентом полезного действия η тепловой машины:

Коэффициент полезного действия указывает, какая часть тепловой энергии, полученной рабочим телом от «горячего» теплового резервуара, превратилась в полезную работу. Остальная часть (1 – η) была «бесполезно» передана холодильнику. Коэффициент полезного действия тепловой машины всегда меньше единицы (η < 1). Энергетическая схема тепловой машины изображена на рис. 3.11.2.

Рис.3.11.2 Энергетическая схема тепловой машины: 1 –нагреватель, 2 – холодильник, 3 – рабочее тело, совершающее круговой процесс.

 

В результате указанных ограничений в энергетике (для получения работы) широкое применение пока находят только два базовых термодинамических цикла: цикл Ренкина и цикл Брайтона. Большинство энергетических установок строится на сочетании элементов указанных циклов.


Поделиться с друзьями:

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.055 с.