Изменение свойств элементов в периодах и группах — КиберПедия 

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Изменение свойств элементов в периодах и группах

2017-11-17 298
Изменение свойств элементов в периодах и группах 0.00 из 5.00 0 оценок
Заказать работу

Радиусы атомов элементов и ионов вычисляются исходя из межядерных расстояний, которые зависят не только от природы атомов, но также и от характера химической связи между ними и от агрегатного состояния вещества.

Радиусы атомов и одинаково заряженных ионов в периоде с увеличением зарядов ядра в основном (за несколькими исключениями) уменьшаются в связи с увеличением сил кулоновского притяжения из-за роста числа, а следовательно, и суммарного заряда электронов в электронных оболочках и ядер.

В подгруппах с увеличением заряда ядра (движение сверху вниз) атомные и ионные радиусы, как правило, увеличиваются, что связанно с увеличением числа электронных уровней.

Энергия ионизации (I) (потенциал ионизации) в периоде возрастает с ростом заряда ядра, в главных и третьей побочной подгруппах – убывает сверху вниз в связи с появлением нового энергетического уровня. В остальных побочных подгруппах энергия ионизации возрастает с ростом заряда ядра.

Сродством к электрону (Е) ( энергия, которая выделяется при присоединении дополнительного электрона к атому, иону или молекуле). Максимальна у атомов галогенов. Сродство к электрону зависит не только от заряда ядра атома, но и от степени заполнения внешних электронных уровней.

Электроотрицательность (ЭО) - обобщенная характеристика элемента, определяемая как сумма энергии ионизации и сродства к электрону.

Относительную ЭО по Полингу определяют как отношение ЭО элемента к ЭО атома лития. Относительная электроотрицательность в периоде возрастает, а в подгруппах уменьшается с ростом заряда ядра.

Окислительная способность элемента меняется так же как и электроотрицательность, а восстановительная способность в обратном порядке.

Плотность простых веществ в периоде обычно проходит через максимум, лежащий примерно в середине периода, возрастает в подгруппах с ростом заряда ядра.

Основные свойства высших оксидов и гидроксидов элементов в периоде закономерно ослабляются, что связано с увеличением силы притяжения гидроксид-ионов к центральному атому с ростом заряда его ядра и уменьшением атомного радиуса, а в подгруппе, как правило, усиливаются, потому что атомный радиус элементов возрастает.

Кислотные свойства этих соединений изменяются в обратном направлении.

Неметаллические свойства в периоде, как правило, усиливаются слева направо, а в подгруппе – ослабевают сверху вниз, металлические – наоборот. Граница между металлами и неметаллами в таблице проходит по диагонали B-At таким образом, что все неметаллы находятся в верхней правой части таблицы (исключение составляют d- элементы).

Основные типы химической связи

Основные виды и важнейшие характеристики химической связи. Химическая связь, комплементарность, строение и свойства молекул.

Механизм образования химической связи может быть смоделирован различными способами.

Метод валентных связей

 

Простейшим является метод валентных связей (ВС), предложенный в 1916 г. американским физико-химиком Льюисом.

Метод валентных связей рассматривает химическую связь как результат притяжения ядер двух атомов к одной или нескольким общим для них электронным парам. Такая двухэлектронная и двухцентровая связь, локализованная между двумя атомами, называется ковалентной.

Принципиально возможны два механизма образования ковалентной связи:

1. Спаривание электронов двух атомов при условии противоположной ориентации их спинов;

2. Донорно-акцепторное взаимодействие, при котором общей становится готовая электронная пара одного из атомов (донора) при наличии энергетически выгодной свободной орбитали другого атома (акцептора).

 

Причиной образования любого типа химической связи является понижение энергии системы, которое сопровождает этот процесс. Разность энергии начального (до образования связей) и конечного (после образования связей) состояния системы называется энергией связи (Есв). Энергия ковалентных химических связей составляет 125-1050 кДж/моль.

Расстояние между ядрами двух связанных атомов называется длиной связи. Длина и энергия связи зависят от её кратности, которая определяется числом электронных пар, связывающих два взаимодействующих атома. Чем кратность связи выше, тем больше энергия связи и меньше длина.

Ковалентную связь характеризуют насыщаемость, направленность и полярность.

Насыщаемость ковалентной связи обусловлена ограниченными валентными возможностями атомов, т.е. их способностью к образованию определённого числа связей.

Общее число валентных орбиталей в атоме определяет максимально возможную ковалентность элемента. Число уже использованных для этого орбиталей определяет ковалентность элемента в данном соединении.

Если атом образует все связи только за счёт спаривания электронов, то обычно говорят просто о его валентности, которая определяется числом неспаренных электронов в основном или возбуждённом состояниях.

Если атом образует связи по обменному и донорно-акцепторному механизмам, то говорят о ковалентности.

Например, ковалентность бора в молекуле BF3 равна трём, а в комплексном ионе BF4 четырем.

Направленность ковалентной связи определяется стремления атомов к образованию связей с возможно большей электронной плотностью между ядрами взаимодействующих атомов.

Перекрывание орбиталей может осуществляться различным образом. При образовании s- связи область перекрывания орбиталей симметрична относительно линии, соединяющей ядра. После образования между двумя атомами s- связи для остальных электронных орбиталей той же формы и с тем же главным квантовым числом остаётся только возможность бокового перекрывания по разные стороны от линии связи, перпендикулярно которой в этом случае проходит узловая плоскость. В результате образуются p- или d- связи. В первом случае возникают две, во втором – четыре области перекрывания.

 


Поделиться с друзьями:

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.012 с.