Основные виды загрязнения гидросферы. — КиберПедия 

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Основные виды загрязнения гидросферы.

2017-11-16 174
Основные виды загрязнения гидросферы. 0.00 из 5.00 0 оценок
Заказать работу

1. Загрязнение нефтью и нефтепродуктами приводит к появлению нефтяных

пятен, что затрудняет процессы фотосинтеза в воде из-за прекращения доступа

солнечных лучей, а также вызывает гибель растений и животных. Каждая тонна

нефти создает нефтяную пленку на площади до 12 кв. км. Восстановление

пораженных экосистем занимает 10-15 лет.

2. Загрязнение сточными водами в результате промышленного

производства, минеральными и органическими удобрениями в результате

сельскохозяйственного производства, а также коммунально-бытовыми стоками

ведет к эвтрофикации водоемов – обогащению их питательными веществами,

приводящему к чрезмерному развитию водорослей, и к гибели других водных

экосистем с непроточной водой (озер, прудов), а иногда к заболачиванию

местности.

3. Загрязнение ионами тяжелых металлов нарушает жизнедеятельность

водных организмов и человека.

4. Кислотные дожди приводят к закислению водоемов и к гибели экосистем.

5. Радиоактивное загрязнение связано со сбросом в водоемы

радиоактивных отходов.

6. Тепловое загрязнение вызывает сброс в водоемы подогретых вод ТЭС и

АЭС, что приводит к массовому развитию синезеленых водорослей, так

называемому цветению воды, уменьшению количества кислорода и отрицательно

влияет на флору и фауну водоемов.

7. Механическое загрязнение повышает содержание механических примесей.

8. Бактериальное и биологическое загрязнение связано с разными

патогенными организмами, грибами и водорослями.

Мировое хозяйство сбрасывает в год 1500 куб. км сточных вод разной степени

очистки, которые требуют 50-100-кратного разбавления для придания им

естественных свойств и дальнейшего очищения в биосфере. При этом не

учитываются воды сельскохозяйственных производств. Мировой речной сток (

37,5-45 тыс. куб. км в год) недостаточен для необходимого разбавления сточных

вод. Таким образом, в результате промышленной деятельности пресная вода

перестала быть возобновляемым ресурсом.

Рассмотрим последовательно загрязнение океанов, морей, рек и озер, а также

методы очистки сточных вод.

Загрязнение рек, озёр, морей и даже океанов происходи с нарастающей
скоростью, так как в водоёмы поступает огромное количество взвешенных и растворённых веществ (неорганических и органических).
Основными источниками загрязнения природных вод являются:

1. Атмосферные воды, несущие вымываемые из воздуха поллютанты
(загрязнители) промышленного происхождения. При стекании по склонам атмосферные и талые воды дополнительно увлекают с собой органическое и минеральное вещество. Особенно опасны стоки с городских улиц, промышленных площадок, несущие нефтепродукты, мусор, фенолы, кислоты и др.

2. Городские сточные воды, включающие преимущественно бытовые
стоки, содержащие фекалии, детергенты (поверхностно-активные моющие средства), микроорганизмы, в том числе патогенные.

3. Промышленные сточные воды, образующиеся в самых разнообразных отраслях производства, среди которых наиболее активно потребляют воду черная металлургия, химическая, лесохимическая, нефтеперерабатывающая промышленности.
С развитием промышленности и увеличением потребления воды растет и количество жидких отходов – сточных вод. Еще в 60-х годах ежегодно в мире образовывалось около 700 млрд. м3 сточных вод. Примерно 1/3 из них – промышленные сточные воды, загрязненные различными веществами. Только половина промышленных жидких отходов подвергалась очистке тем или иным способом. Другая половина сбрасывалась в водоемы без какой-либо очистки.
При технологических процессах появляются следующие основные виды
сточных вод.
1 Реакционные воды, загрязненные как исходными веществами, так и продуктами реакции.
2. Воды, содержащиеся в сырье и исходных продуктах (свободная или связанная вода).
3. Промывные воды – после промывки сырья, продуктов, оборудования, маточные водные растворы.
4. Водные экстрагенты и абсорбенты.
5. Охлаждающие воды, не соприкасающиеся с технологическими продуктами и использующиеся в системах оборотного водоснабжения.
6. Бытовые воды из предприятий питания, прачечных, душевых, туалетов, после мытья помещений и т.д.
7. Атмосферные осадки, стекающие с территории промышленных предприятий, загрязнённые различными химическими веществами.
В сточных водах гидролизной промышленности присутствуют спиртовые и фурфурольные компоненты, последрожжевая бражка, сивушные, эфирно
альдегидные и скипидарные фракции, различные кислоты.
Источником загрязнения водных экосистем является и сельское хозяйство. Во-первых, повышение урожайности, продуктивности земель неизбежно связано с применением удобрений и ядохимикатов (пестицидов). Попадая на поверхность почвы, они смываются с нее и оказываются в водоемах. Во-вторых, животноводство связано с образованием больших масс мертвой органики (навоза, подстилки), мочевины, которые опять-таки могут оказываться в водных объектах. Эти отходы неядовиты, но их массы огромны (вспомним, что получение 1 кг мяса «стоит» 70-90 кг кормов) и, несмотря на их нетоксичность, они ведут к тяжелым последствиям для водных экологических систем.
Большую опасность представляют загрязнения вод радиоактивнымвеществами. Взвешенные твердые частицы способствуют образованию стабильных водных суспензий, при этом ухудшаются прозрачность и внешни вид воды, снижается активность фотосинтеза водных растений.
Загрязняют воду теплые сточные воды от предприятий теплоэнергетики: поскольку при этом меняется температурный режим в водном объекте, а затем может возникать несоответствие его санитарным требованиям.
Загрязнение рек, озер, морей и даже океанов принимает такие размеры, что во многих районах превышает их способность к самоочищению. Уже сейчас в некоторых странах начинает ощущаться нехватка пресной воды.
Загрязнение водных систем представляет большую опасность, чем за-грязнение атмосферы, по следующим причинам: процессы регенерации, или самоочищения, протекают в водной среде гораздо медленнее, чем в воздухе; источники загрязнения водоемов более разнообразны. Естественные процессы, осуществляющиеся в водной среде и подвергающиеся действию загрязнений, более чувствительны сами по себе и имеют большее значение для обеспечения жизни на Земле, чем те, которые протекают в атмосфере.

Методы очистки воды.
2.1 Химические.

Химические методы очистки сточных вод гальванических отделений основаны на применении химических реакций, в результате которых загрязнения, содержащиеся в сточных водах, превращаются в соединения, безопасные для потребителя, или легко выделяются в виде осадков.
Среди известных методов химической нейтрализации сточных вод, содержащих цианистые соединения, техническое применение нашли лишь немногие.
Самый старый метод основан на выделении ионов CN- в виде труднорастворимой комплексной соли, образующейся в основной среде в присутствии ионов Fe2+.
В зависимости от условий в которых протекают эти реакции, возникает осадок берлинской лазури Fe4[Fe(CN)6]3 или турнбулевой сини Fe3[Fe(CN)3]2.Качественное удаление ионов из сточных вод с помощью этого метода возможно лишь в случае очень точной выдержки всех установленных условий реакции и в особенности pH, реакционной среды.
Применяемый метод удаления цианистых соединений из сточных вод базируется на их окислении хлором (либо гипохлоритом) в основной среде. Наиболее часто здесь применяют гипохлорит натрия, хлорную известь и газообразный хлор. Соединения эти в основной среде гидролизуются с получением ионов ClO-, которые с цианидами реагируют в соответствии с реакцией:
CN- + HOCl = CNCl + OH-; (a)

CNCl + 2OH- = CNO- + Сl- + H2O. (б)

Реакция окисления цианидов до цианатов протекает в 2 стадии, сначала образуется хлорциан, который затем гидролизуется до хлорцианатов.
Т.к. хлорциан является сильно отравляющим газом, то в реакционной среде необходимо иметь такие условия, чтобы скорость реакции (б) была бы больше скорости реакции (а).Такие условия наблюдаются в том случае, когда концентрация цианидов в сточных водах меньше 1 г/л, t сточных вод < 50 градусов и pH > 8,5. Из исследований скорости гидролиза хлорциана следует, что она значительно зависит от реакции среды:

рН реакц.среды 8 9 10 11 12

Прод.гидрол.СNCl, ч 20 12 4 1 0,25

Установлено, что расход гипохлорида при окислении цианидов до цианатов также зависит от рН реакционной среды. При рН равном 8,5, его расходуется на 35-80% больше, чем это следует из расчетов, a при рН = 11 - на 10% больше. Это связано с расходом гипохлорита на дальнейшее окисление части цианидов до двуокиси углерода и азота:
2CNO- + OCl- + H2O = 2OH- + Cl- + 2CO2 + N2.

На кинетику этой реакции заметное влияние оказывает концентрация окислителя (гипохлорит) и рН реакционной среды. При рН > 10 скорость ее так мала, что после 24 ч только незначительная часть цианатов подвергается дальнейшему окислению. В этих условиях значительное ускорение реакции достигается только при многократном повышении содержании гипохлорита, что на практике невозможно, т.к. высокая концентрация активного хлора в сточных водах недопустима и требует мер по его удалению.

При снижении рН до 7,5-8,5 при небольшом избытке гипохлорита (10%) реакция окисления цианидов заканчивается в течение 10-15 минут.
Теоретический расход окислителя, выраженный массой активного хлора,
идущего на окисление 1 г ионов CN-, образуемых при диссоциации простых цианидов до цианатов, достигает 2,84 г, а при окислении до СО2 и N2 - 6,2 г. Т.к. в цианистых сточных водах содержатся также комплексные цианиды различных металлов, то для окисления 1 г СN применяют следующее количество хлора:

до цианатов - 3,3 г Cl; до СО2 и N2 - 8,5 г Cl.

Несмотря на то, что цианаты в 1000 раз менее токсичны по сравнению с цианидами, все же они требуют дальнейшей нейтрализации, которая может протекать вышеприведенным способом до СО2 и N2, либо путем их гидролиза до солей аммония по реакции

 

CNO- + 2H2O +2H+ = NH+4 + H2CO3.

 

При рН < 3 реакция гидролиза протекает за 2 минуты.

Гипохлоритный метод окисления цианидов до цианатов применяют при очистке обычных сточных вод гальванических отделений, в которых концентрация цианидов (в пересчете на ионы СN) не превышает 100-200 мг/л.Сточные воды с более высокой концентрацией цианидов (отработанные электролиты) требуют соответствующего разбавления, или др. методов очистки из-за опасности выделения очень ядовитого цианида хлора.
На практике нейтрализацию цианистых сточных вод проводят периодическим или непрерывным методом. Однако существует тенденция к установке, даже в небольших гальванических отделениях, автоматических проточных устройств. Независимо от способа накопления сточных вод в устройствах повсеместно применяемый способ их очистки основан на окислении цианидов до цианатов при рН=10-11 и дальнейшем их окислении до СО2 и N2 при рН = 7,5-8,5, либо гидролизе до солей аммония при рН < 3.

Процесс очистки цианистых сточных вод не заканчивается их
нейтрализацией содержащихся в них цианистых соединений, т.к. в них еще остаются для удаления соединения тяжелых металлов (цинка, меди, кадмия и др.).Когда сточные воды окисляют методом полного окисления цианидов, то в следующей стадии процесса (окисление цианатов до СО2 и N2) создаются благоприятные условия для полного выделения гидроокиси металлов в виде взвеси. При проведении же процесса гидролиза цианатов до солей аммония в кислой среде необходима добавочная нейтрализация кислот, содержащихся в сточных водах для создания условий, благоприятствующих образованию и выделению взвеси гидроокиси металлов.
Т.к. в полнопрофильных гальванических отделениях образуются также и остальные 2 группы сточных вод (хромовых и кислых с основными), то индивидуальное выделение и удаление взвеси тяжелых металлов из цианистых сточных вод не применяют (после нейтрализации цианистых соединений).Такую операцию проводят на смешанных сточных водах. Наиболее часто применяют обработку цианистых сточных вод методом гидролиза, чем их окисление до СО2 и N2.Такой метод более простой и дешевле в эксплуатации.
Конец реакции окисления цианидов до цианатов можно установить определением содержания цианидов аналитическим способом. Практически было установлено, что выдержка в течение 15 мин избытка активного хлора (5-15 мг/л) в сточных водах при рН равном 10,5-11 определяет окончание реакции окисления цианидов.
Вышеописанный метод (реагентный) в настоящее время получил наибольшее распространение в отечественной практике обезвреживания сточных вод гальванических цехов. Основное его достоинство - крайне низкая чувствительность к исходному содержанию загрязнений, а основной недостаток - высокое остаточное солесодержание очищенной воды. Последнее вызывает необходимость в доочистке.
Среди методов очистки сточных вод гальванических цехов, имеющих промышленное значение, кроме уже упомянутых химических методов, внимания заслуживают ионные и электрохимические методы. Каждый из этих методов имеет свои недостатки и преимущества, тем не менее они являются несомненно более современными по сравнению с классическим химическим методом. Основное преимущество - нейтрализация концентрированных сточных вод, получение ценных электролитов и чистой воды, пригодной для повторного использования. С помощью таких методов возможно создание в гальваническом цехе замкнутой системы циркуляции технологической воды и почти полное устранение необходимого слива сточных вод в канализационную систему.

2.2 Электрохимические.
Применение электрохимических процессов целесообразно для окисления цианидов, очистки растворов хром. кислоты, повышение концентрации и преобразование электролитов, деминерализации растворов.
В процессе электролиза сточных вод, содержащих цианистые соединения, на аноде происходит окисление ионов CN-, а также комплексных ионов, например, [Cu(CN)3]2-, [Zn(CN)4]2- и др. по реакции:

CN- + 2OH- - 2e- = CNO- + H2O,

[Cu(CN)3]2- + 6OH- - 7e- = Cu2+ + 3CNO- + 3H2O,

[Zn(CN)4]2- + 8OH- - 8e- = Zn2+ + 4CNO- + 4H2O,

а на катоде наступает разрядка и выделение катионов металла.

Образующиеся в приведенных реакциях ионы цианата по мере повышения их концентрации окисляются на аноде до СО2 и N2 по реакции:
15

2CNO- + 4OH- - 6e- = 2CO2 + N2 + 2H2O.
Taк как реакционная среда основная, то на аноде протекает следующая реакция:

4ОН- - 4е- = О2 + 2Н2О.

Если в реакционной среде находятся еще и ионы хлорида, которые ускоряют и облегчают процесс анодного окисления цианидов, то на аноде и вблизи него протекают добавочные реакции:

2Cl- - 2e- = 2Cl; 2Cl = Cl2;

CN- + 2Cl + 2OH- = CNO- + 2Cl- + H2O;

2CNO- +6Cl + 4OH- = 2CO2 + N2 + 6Cl- + 2H2O;

2[Cu(CN)3]2- + 14Cl + 12OH- = 2Cu2+ + 6CNO- + 14Cl- + 6H2O.

Введение хлоридных ионов в реакционную среду приводит к значительному ускорению окисления цианидов с одновременным повышением выхода по току процесса больше чем на 100 % (в среднем с 35 до 80 %) при одновременном снижении расхода электроэнергии на 30 %.

Это приписывают повышению проводимости электролита и активному участию в реакции окисления цианидов атомарного хлора, образующего в процессе разложения хлоридного иона на аноде.

Установлено также, что лучшие результаты получаются при электрохимическом окислении очень концентрированных растворов цианидов, а не их разбавленных растворов. Процесс электрохимического окисления
цианидов протекает при следующих условиях: рН>11;концентрация хлоридов не должна превышать концентрацию цианидов больше чем в 5 раз; принимают на 1г СN - 10г NaCl; аноды должны быть сделаны из графита, а катоды из кислотоупорной стали, анодная плотность тока должна быть 0,001 А/см2 (ток постоянный);сточные воды должны перемешиваться сжатым воздухом. В этих условиях достигается выход по току 80 %, а расход электроэнергии на окисление 1г CN - от 0,007 до 0,01 кВт в час.
Сравнительный анализ стоимости очистки цианистых сточных вод химическим и электрохимическим методом отдает предпочтение электрохимическому методу, т.к. он прост в применении, а также не требует строительства сложных устройств, типичных для химического метода.
Кроме того, для электрохимических способов характерны существенное сокращение расхода химикатов и меньшая потребность в производственных площадях. В результате низкого солесодержания очищенного стока снижаются и последующие затраты на доочистку стока с целью повторного использования воды.
2.3 Ионообменный.
Гетерогенный ионный обмен или ионообменная сорбция - это процесс обмена между ионами, находящимися в растворе, и ионами, присутствующими на поверхности твердой фазы - ионита. Очистка сточных вод методом ионного обмена позволяет извлекать и утилизировать ценные примеси (для нашего случая это медь и цинк), очищать воду до ПДК с последующим ее использованием в технологических процессах или в системах оборотного водоснабжения.
Цианистые стоки из емкости 1 для усреднения состава и частичного отделения механических примесей направляются в усреднитель 8.Из аппарата 8 стоки насосом подаются в песчано - гравийный фильтр 2 для очистки от механических примесей. Скорость движения жидкости, отнесенная к поперечному сечению фильтра, 5-7 м/ч.Следующая ступень - очистка активированным углем в аппарате 3 от маслопродуктов, ПАВ, биологических примесей и т.д.Отфильтрованная вода направляется в катионообменник 4, заполненный смолой КУ-2, КУ-8 или КУ-23 в водородной форме. Линейная скорость движения жидкости в этом аппарате достигает 10-20 м/ч. По достижении на выходе концентрации сорбируемых ионов 0,02-0,03 мг.экв/л катионит подвергается регенерации. Освобожденная от катионов вода поступает в анионообменники 5 и 6, заполненные смолами АВ-17-8, АН-221 и др. При содержании сорбируемых анионов на выходе из аппарата 0,05-0,1 мг/л анионит регенерируют.
Сточные воды направляются на производство (в систему оборотного водоснабжения), а промывные - в сборники концентратов для химического обезвреживания и, в нашем случаи, для извлечения меди и цинка.
Главный недостаток технологии ионного обмена состоит в том, что для выделения из воды элементов или солей необходимы регенерирующие кислоты или щелочи, которые впоследствии в виде солей поступают в окружающую среду, вызывая вторичное загрязнение последней.
2.4 Другие методы очистки.
К числу таких методов можно отнести следующие 2 метода - термическое обезвреживание и мембранная технология, которые позволяют получить высококачественную воду и несомненно получат более широкое распространение в будущем.
Термическое обезвреживание сточных вод гальванических цехов включает 2 стадии: предварительное концентрирование и огневое обезвреживание концентрата (шлама).
Целью 1 стадии является возврат части воды в производство. Применяемые в основном процессы упаривания и сушки лимитируются необходимостью учета возможности образования отложений на поверхности теплообмена, коррозии оборудования и загрязнения атмосферы вредными газообразными выбросами.
Огневое обезвреживание концентрата осуществляется в высокотемпературных печах, топках котлоагрегатов. Так, цианосодержащие стоки и шламы сжигают в трубчатых, вращающихся и циклонных печах, в кипящем слое, либо в печах с загрузкой катализатора. При этом цианиды полностью окисляются, а связанные с ним металлы, выделяются в виде окислов или чистых металлов. Каталитическое окисление снижает рабочую температуру процесса и, следовательно, расход топлива.
Мембранная же технология основана на применении мембран, которые способны задерживать практически все многовалентные катионы, задерживая 50-70 % примесей. Поэтому их применение для очистки промывных сточных вод и регенерации электролитов представляется наиболее перспективным.

 

 


Поделиться с друзьями:

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.024 с.