Устройства для автоматической смены инструмента — КиберПедия 

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Устройства для автоматической смены инструмента

2017-11-16 192
Устройства для автоматической смены инструмента 0.00 из 5.00 0 оценок
Заказать работу

Особенности устройств автоматической смены инструмента (АСИ) оказывают существенное влияние на конструкцию инструмента, которая должна обеспечить возможность его захвата, фиксации, укладки в магазин, установки в шпиндель.

Классификация способов и устройств АСИ зависит от типа станка, расположения шпинделя, количества и типов применяемого инструмента, времени смены инструмента. Классификация способов и устройств АСИ приведена на рисунке 6, Револьверные шпиндельные головки (рис. 6, а) в последние годы применяются реже из-за малого числа размещаемого в них инструмента и неточностей, вносимых индексацией головок, а также недостаточной их жесткостью. Сменные многошпиндельные головки (рис. 6, б) используют в многооперационных станках при изготовлении крупных серий деталей. Магазины шпиндельных гильз (рис. 6, в) лишены недостатков, свойственных револьверным шпиндельным головкам, но имеют высокую стоимость вследствие необходимости изготовления большого числа прецизионных шпиндельных узлов. Револьверные магазины с постоянным положением относительно шпинделя (рис. 6, г) содержат большее количество инструмента, чем револьверные шпиндельные головки, и позволяют разместить шпиндель любой длины.

К их недостаткам следует отнести ограниченную емкость магазина, большой вылет шпинделя, что снижает точность обработки, а также существенное загромождение рабочей зоны станка. Магазины инструментов без автооператоров (рис. 6, д) требуют дополнительного радиального перемещения, что ограничивает их емкость и количество вариантов компоновок. Устройства с одним загрузочным оператором (рис. 6, е) получили широкое распространение. При повороте автооператор захватывает одновременно оправки с предыдущим и последующим инструментом, затем осевым перемещением выталкивает их из магазина и шпинделя, поворотом на 1800 меняет местами и обратным осевым движением посылает предыдущий инструмент в магазин, который в компоновке нельзя располагать далеко от шпинделя. Магазин с автооператором на каждый инструмент (рис. 6, ж) имеет ограниченную емкость или же получается громоздким. Обслуживание устройства, расположенного в рабочей зоне, затруднено. Магазины с загрузочными и транспортными автооператорами (рис. 6, з) могут быть размещены на достаточном удалении от шпинделя, в удобном для обслуживания месте. Усложнение, связанное с дополнительным автооператором, компенсируется возможностью изготовления магазинов в виде независимых агрегатных узлов различной емкости.

Устройства с автооператором-накопителем инструмента (рис. 6, и) применяют с целью исключения использования большого магазина и ускорения АСИ при повторяющемся применении наиболее характерного для данной детали режущего инструмента. В комбинированном устройстве (рис. 6, к) револьверную шпиндельную головку используют в сочетании с магазином М, из которого легкие инструменты автоматически загружаются поочередно в два противоположных шпинделя. В остальных шпинделях устанавливают тяжелые инструменты, закрепляемые вручную. В комбинированном устройстве со специализированными шпинделями (рис. 6, л) двухшпиндельная револьверная головка для легких инструментов автоматически загружается из магазина М, а шпиндель, предназначенный для тяжелых инструментов, загружают вручную или из особого магазина. Сочетание револьверной головки и магазина позволяет время АСИ свести к времени индексации головки, поскольку поиск и загрузка-разгрузка инструментов совмещены с работой станка. Специализация шпинделей позволяет приспособить их к условиям работы и уменьшить размеры магазина.

 

65. Сталь нельзя сразу получить из железной руды. Обязательно сначала получают чугун, а затем из него можно выплавить сталь. Однако при выплавке стали используют в небольшом количестве железную руду. Основными исходными материалами для производства стали являются передельный чугун и стальной лом (скрап). Содержание углерода и примесей в стали значительно ниже, чем в чугуне (таблица 1), поэтому сущность передела чугуна в сталь заключается в снижении содержания углерода и примесей путем их избирательного окисления и перевода в шлак и газы в процессе плавки.

Железо окисляется в первую очередь при взаимодействии чугуна с кислородом в сталеплавильных печах: Fe + 1/2O2= FeO + 263,68 кДж. Одновременно с железом окисляются Si, P, Mn, C и др. Образующийся оксид железа при высоких температурах отдаёт свой кислород более активным примесям в чугуне, окисляя их: 2FeO + Si = SiO2+ 2Fe + 330,5 кДж; 5FeO + 2P = P2O5+ 5Fe + 225,94 кДж; FeO + Mn = MnO + Fe + 122,59 кДж; FeO + C = CO + Fe – 153,93 кДж.

Процессы выплавки стали осуществляют в три этапа. Первый этап – расплавление шихты и нагрев ванны жидкого металла. Температура металла сравнительно невысокая, интенсивно происходит окисление железа, образование оксида железа и окисление примесей: кремния, марганца и фосфора. Главная задача этапа – удаление фосфора. Для этого желательно проведение плавки в основной печи, где шлак содержит оксид кальция. Фосфорный ангидрид образует с оксидом железа нестойкое соединение (FeO)3 · P2O5. Оксид кальция характеризуется более сильными основными свойствами, чем оксид железа, поэтому при невысоких температурах связывает P2O5 и переводит его в шлак: 2[P] + 5(Fe O) + (CaO) = (4CaO · P2O5) + 5[Fe].

Для удаления фосфора необходимы невысокие температура ванны металла и шлака, а также достаточное содержание в шлаке FeO. Для повышения содержания FeO в шлаке и ускорения окисления примесей в печь добавляют железную руду и окалину, наводя железистый шлак. По мере удаления фосфора из металла в шлак, содержание фосфора в шлаке увеличивается. Поэтому необходимо убрать этот шлак с зеркала металла и заменить его новым со свежими добавками CaO.

Второй этап – кипение металлической ванны – начинается по мере прогрева до более высоких температур. При повышении температуры более интенсивно протекает реакция окисления углерода, происходящая с поглощением теплоты: FeO + C = CO + Fe – 153,93 кДж.

Для окисления углерода в металл вводят незначительное количество руды, окалины или вдувают кислород. При реакции оксида железа с углеродом, пузырьки оксида углерода выделяются из жидкого металла, вызывая «кипение ванны». При «кипении» уменьшается содержание углерода в металле до требуемого, выравнивается температура по объему ванны, частично удаляются неметаллические включения, прилипающие к всплывающим пузырькам CO, а также газы, проникающие в пузырьки CO. Все это способствует повышению качества металла. Следовательно, этот этап - основной в процессе выплавки стали. На этом этапе создаются условия для удаления серы, которая в стали находится в виде сульфида (FeS), растворимого в основном шлаке. Чем выше температура, тем большее количество сульфида железа (FeS) растворяется в шлаке и взаимодействует с оксидом кальция CaO: (FeS) + (CaO) = (CaS) + (FeO). Образующееся соединение растворяется в шлаке, но не растворяется в железе, поэтому сера удаляется в шлак.

Третий этап – раскисление стали заключается в восстановлении железа из его оксида, растворённого в жидком металле. При плавке повышение содержания кислорода в металле необходимо для окисления примесей, но в готовой стали кислород – вредная примесь, так как понижает механические свойства стали, особенно при высоких температурах. Сталь раскисляют двумя способами: осаждающим и диффузионным. Осаждающее раскисление осуществляется введением в жидкую сталь растворимых раскислителей (ферромарганца, ферросилиция, ферроалюминия), содержащих элементы, которые обладают большим сродством к кислороду, чем железо. В результате раскисления восстанавливается железо и образуются оксиды: MnO, SiO2, Al2O3 и др., которые имеют меньшую плотность, чем сталь, и удаляются в шлак.

Диффузионное раскисление осуществляется раскислением шлака. Ферромарганец, ферросилиций и алюминий в измельчённом виде загружают на поверхность шлака. Раскислители, восстанавливая оксид железа, уменьшают его содержание в шлаке. Следовательно, оксид железа, растворённый в стали переходит в шлак. Образующиеся при этом процессе оксиды остаются в шлаке, а восстановленное железо переходит в сталь, при этом в стали снижается содержание неметаллических включений и повышается ее качество.

В зависимости от степени раскисления выплавляют стали: а) спокойные, б) кипящие, в) полуспокойные. Спокойная сталь получается при полном раскислении в печи и ковше. Кипящая сталь раскислена в печи неполностью, ее раскисление продолжается в изложнице при затвердевании слитка, благодаря взаимодействию оксида железа и углерода. Полуспокойная сталь имеет промежуточную раскисленность между спокойной и кипящей. Частично она раскисляется в печи и в ковше, а частично – в изложнице, благодаря взаимодействию оксида железа и углерода, содержащихся в стали.

Легирование стали осуществляется введением ферросплавов или чистых металлов в необходимом количестве в расплав. Легирующие элементы, у которых сродство к кислороду меньше, чем у железа (Ni, Co, Mo, Cu), при плавке и разливке не окисляются, поэтому их вводят в любое время плавки. Легирующие элементы, у которых родство к кислороду больше, чем у железа (Si, Mn, Al, Cr, V, Ti и др.), вводят в металл после раскисления или одновременно с ним в конце плавки, а иногда в ковш.

Существует несколько способов получения стали: конверторный, мартеновский и электроплавка.

Конверторный способ основан на продувке сжатым воздухом расплавленного чугуна. При продувке кислород воздуха вступает в реакцию с примесями чугуна и окисляет их, в результате чего получается сталь. Для конверторного способа используют жидкий чугун, полученный в доменных печах и выдержанный в специальных металлоприемниках (миксерах).

Достоинствами конверторного способа являются: высокая производительность агрегатов, компактность оборудования и т. д.

К недостаткам этого способа относятся невозможность переработки большого количества стального и железного лома, а также передел чугунов только определенного химического состава.

Марки конверторной стали обозначают начальными буквами Б и Т, что значит бессемеровская и томасовская сталь.

Мартеновский способ вызван к жизни необходимостью перерабатывать стальной лом и отходы производства. Требовалось создать печь, в которой температура была бы настолько высокой, чтобы можно было плавить сталь и железо. Получение высокой температуры в мартеновской печи дало возможность не только использовать промышленные отходы в качестве шихтовых материалов, но и получать стали с весьма разнообразными свойствами. Мартеновская сталь поступает в виде листовой и сортовой, рельсов, отливок, заготовок для ковки и штамповки.

Плавка стали в электропечах дает возможность получать высококачественные стали. Сущность процесса заключается в очищении стали от шлаков и примесей в виде серы и фосфора.

Сера и фосфор в стали являются вредными примесями. Сера снижает литейные свойства, препятствует выходу газов из жидкой стали, вызывает ломкость. Фосфор снижает пластичность и вызывает хладноломкость (хрупкость) стали. Кремний повышает упругость и вязкость стали, марганец повышает износоустойчивость.

66. 11.1. Отжиг I рода

Отжиг I рода в зависимости от исходного состояния стали и температуры его выполнения может включать процессы гомогенизации, рекристаллизации, снижение и твердости и снятие внутренних напряжений. Характерная особенность этого вида отжига в том, что указанные процессы происходят независимо от того, протекают ли в сплавах при этой обработке фазовые превращения (a «g) или нет.
Поэтому отжиг I рода можно проводить при температурах выше или ниже температур фазовых превращений (критических точек А1и А3). Этот вид обработки в зависимости от температурных условий его выполнения устраняет химическую или физическую неоднородность, созданную предшествующими обработками. Гомогенизация (диффузионный отжиг). Диффузионному отжигу подвергаются слитки легированной стали с целью уменьшения дендритной и внутрикристаллической ликвации, которая повышает склонность стали, обрабатываемой давлении, к хрупкому излому. Температура отжига - 1100 - 12000С. Выдержка не более 15 - 20 часов. После выдержки охлаждают до 800 - 8200С в печи, а далее на воздухе. В результате диффузионного отжига получается крупное зерно. Этот недостаток устраняется при последующей обработки слитка давлением или в процессе последующей термической обработки Рекристаллизационный отжиг. Под рекристаллизационным отжигом понимают нагрев холоднодеформированной стали выше температуры начала рекристаллизации, выдержку при этой температуре с последующим охлаждением. Снимает наклеп. Температура отжига для углеродистых сталей с 0,08 - 0,2 %С, чаще подвергаемых холодной деформации (прокатке, штамповке, волочению), температура отжига находится в интервале - 680 - 7400С. Отжиг калиброванных прутков(холодная протяжка) их высокоуглеродистой легированной стали (хромистой, хромокремнистой) проводят при 680-7400С в течении 0,5 - 1,5 ч. Кроме рекристаллизации феррита при отжиге стали могут протекать коагуляция и сфероидизация цементита, при этом повышается пластичность, что облегчает обработку давлением. Высокий отпуск (для уменьшения твердости). После ускоренного охлаждения легированные стали имеют неравновесную структуру - сорбит, троостит, бейнит или мартенсит - и, как следствие этого, высокую твердость. Температура отпуска 650 - 7000С в течение 3 - 15 ч. и последующему охлаждению. После высокотемпературного отпуска доэвтектоидная сталь лучше обрабатывается резанием, чем после полного отжига, когда структура - обособленные участки феррита и перлита. Для высоколегированных сталей, у которых практически не отмечается перлитного превращения, высокий отпуск является единственной термической обработкой, позволяющий снизить их твердость. Отжиг для снятия остаточных напряжений. Этот вид отжига применяют для отливок, сварных изделий, деталей после обработки резанием, в которых в процессе предшествующих технологических операций возникли остаточные напряжения. Отжиг стальных изделий для снятия напряжений проводят при температуре 160 - 7000С в зависимости от характера причин возникновения внутренних напряжений с последующим медленным охлаждением. Остаточные напряжения снимаются и при проведении других видов отжига, например, рекристаллизационого, с фазовой перекристаллизацией, а также при отпуске (особенно высоком) закаленной стали.

Отжиг II рода

Отжиг II рода заключается в нагреве стали до температур выше точек Ас1 или Ас3, выдержке и как правило, последующем медленном охлаждении. В процессе нагрева и охлаждения в этом случае протекают фазовые превращения (g «a), определяющие структуру и свойства стали.
Различают следующие виды отжига: полный, изотермический и неполный.
Полный отжиг заключается в нагреве доэвтектоидной стали на 30 - 50°С выше температуры, соответствующей точке Ас3, выдержке при этой температуре для полного прогрева и завершения фазовых превращений в объеме металла и последующем медленном охлаждении
. При нагреве до температуры выше точки А3на 30-500С образуется аустенит, характеризующий мелким зерном, поэтому при охлаждении возникает мелкозернистая структура, обеспечивающая высокую вязкость и пластичность, и возможность достижения высоких свойства после окончательной термической обработки.Чрезмерное повышение температуры нагрева выше точки А3 вызывает рост аустенита, что ухудшает свойство стали.Медленное охлаждение должно обеспечить распад аустенита при малых степенях переохлаждения, что бы избежать образования излишне дисперсной ферритно-карбидной структуры и свойственное ей более высокой твердости. Чем больше устойчивость аустенита в области температур перлитного превращения, тем медленнее должно быть охлаждение.Полному отжигу подвергают сортовый прокат из стали с 0,3-0,4 % С, поковки, фасонные отливки. Изотермический отжиг состоит обычно в нагреве легированной стали, как и для полного отжига, и в сравнительно быстром охлаждении до температуры, лежащей ниже точки А1 (обычно 660 - 6800С) При этой температуре назначают изотермическую выдержку 3 - 6 ч., необходимую для полного распада аустенита, после чего следует охлаждение на воздухе. Преимущество изотермического отжига

  • в сокращении длительности процесса, особенно для легированных сталей, которые для заданного снижения твердости приходится охлаждать очень медленно.
  • в получении более однородной ферритно-перлитной структуры.

Пружинную (канатную) проволоку из стали, содержащей 0,65-0,9%С, перед холодным волочением подвергают изотермической обработке - патентированию. Для потентирования проволоку подвергают высокотемпературной аустенизации для получения однородного аустенита, а затем пропускают через расплавленную соль температурой 450-5500С. В результате изотермического распада аустенита образуется тонкопластинчатый троостит или сорбит. Такая структура позволяет при холодной протяжке давать большие обжатия (более 75%) без обрывов и после заключительного холодного волочения получить высокую прочность (sB= 2000-2250 МПа). Неполный отжиг отличается от полного тем, что сталь нагревают до более низкой температуры (немного выше температуры А1). Неполный отжиг доэвтектоидных сталей применяют для улучшения обрабатываемости их резанием. При неполном отжиге происходит частичная перекристаллизация стали – вследствие перехода аустенита в перлит. Такой отжиг для конструкционных легированных сталей проводится при 750 - 7700С с последующим охлаждением со скоростью 30-600С/ч до 6000С, далее на воздухе.Неполный отжиг доэвтектоидной сталей применяют для улучшения обрабатывания их резанием; для заэвтектоидных и легированных сталей (выше на 10 - 300С Ас1) для получение зернистого перлита и снятия цементитной сетки и получения ее зернистой структуры после нормализации. Стали, близкие к эвтектоидному составу, имеют узкий интервал температур нагрева (750 - 7600С) для отжига на зернистый цементит, для заэвтектоидных углеродистых сталей интервал расширяется до 770-7900С. Легированные заэвтектоидные стали для получения зернистых карбидов можно нагревать до более высоких температур и в более широком интервале (770- 8200С). Охлаждение при сфероидизации медленное, обеспечивающее полный распад аустенита. После отжига на зернистый перлит эвтектоидные и заэвтектоидные стали обладаю наилучшей обрабатываемостью резанием, т.е. возможно применение больших скоростей резания и достигается высокая частота поверхности.

Отжиг нормализационный (нормализация) заключается в нагреве доэвтектоидной стали до температуры, превышающей точку Ас3 на 40 -500С, заэвтектоидной стали до температуры выше точки Аcm также на 40 - 500С, в непродолжительной выдержке для прогрева садки и завершения фазовых превращений и охлаждении на воздухе.
Нормализация вызывает полную фазовую кристаллизацию стали и устраняет крупнозернистую структуру, полученную при литье и прокатке, ковке или штамповке. Нормализацию широко применяется для улучшения свойств стальных отливок вместо закалки и отпуска. Ускоренное охлаждение на воздухе приводит к распаду аустенита при более низких температурах, что повышает дисперсность ферритно-цементитной структуры и увеличивает количество перлита, или, точнее сорбита или троостита. Это повышает прочность и твердость нормализованной среднеуглеродистой стали по сравнению с отожженной. Назначение нормализации различно в зависимости от состава стали, для низкоуглеродистых сталей нормализацию применяют вместо отжига. При повышении твердости нормализация обеспечивает большую производительность при обработке резанием и получение более чистой поверхности. Для отливок из среднеуглеродистой стали нормализацию с высоким отпуском применяют вместо закалки и высоко отпуска. В этом случае механические свойства несколько ниже, но детали будут подвергнуты меньшей деформации по сравнению с получаемой при закалке, и вероятность появления трещин практически исключается. Нормализация с последующим высоким отпуском (600-6500С) часто используют для исправления структуры легированных сталей вместо полного отжига, так как производительность и трудоемкость этих двух операций выше, чем одного отжига.

Закалка

 

Закалка - термическая обработка - заключается в нагреве стали до температуры выше критической (А3 для эвтектоидной и А1 - для заэвтектоидной сталей) или температуры растворения избыточных фаз, в выдержке и последующем охлаждении со скоростью, превышающих критическую. Закалка не является окончательной операцией термической обработки, Чтобы уменьшить хрупкость и напряжения, вызванные закалкой, и получить требуемые механические свойства, сталь после закалки обязательно подвергается отпуску. Инструментальную сталь в основном подвергают закалке и отпуску для повышения твердости. износостойкости и прочности, а конструкционную сталь - для повышения прочности, твердости, получения достаточно высокой пластичности и вязкости, а для ряда деталей также высокой износостойкости. Выбор температуры закалки. Доэвтектоидные стали нагревают до температур на 30 - 500С выше точки Ас3. (аустенит®мартенсит). Заэвтектоидные стали нагревают выше точки Ас1. При таком нагреве образуется аустенит при сохранении некоторого количества цементита(аустенит + цементит®мартенсит + цементит). Верхний предел закалки ограничивается, так как чрезмерное повышение температуры выше точки А1связано с ростом зерна. Поэтому интервал колебания температур закалки невелик (15 - 200С). Закалка от температур выше точки Аcmснижает твердость стали за счет увеличения количества остаточного аустенита. Для многих высоколегированных сталей температура нагрева под закалку значительна превышает критические точки А1и А3(на 150 - 2500С), что необходимо для перевода в твердый раствор специальных карбидов и получения требуемой легированности аустенита. Это повышение не ведет к заметному росту зерна так как нерастворенные частицы карбидов тормозят рост зерна аустенита. Охлаждающие среды для закалки. Охлаждение при закалке должно обеспечить получение структуру мартенсита в пределах заданного сечения изделия (определенную прокаливаемость) и не должно вызывать закалочных эффектов: трещин, деформаций, коробления и высоких растягивающих остаточных напряжений в поверхностных слоях. Чаще всего для закалки используют кипящие жидкости - воду, водные растворы щелочей и солей, масла. При закалке в этих средах различают три периода:

  • пленочное кипение, когда на поверхности стали образуется "паровая рубашка"; в этот период скорость охлаждения сравнительно невелика;
  • пузырьковое кипение, наступающее при полном разрушении паровой пленки, наблюдаемое при охлаждении поверхности до температуры ниже критической; в этот период происходит быстрый отвод теплоты;
  • конвективный теплообмен, который отвечает температурам ниже температуры кипения охлаждающей жидкости: тепло отвод в этот период идет с наименьшей скоростью.

Вода как охлаждающая среда имеет существенные недостатки: высокая скорость охлаждения в области температур мартенситного превращения нередко приводит к образованию закалочных дефектов; с повышением температуры воды резко ухудшается ее закалочная способность. Масло как закалочная среда имеет преимущества: небольшую скорость охлаждения в мартенситном интервале температур; постоянство закаливающей способности в широком интервале температур (20-1500С). К недостаткам следует отнести повышенную воспламеняемость (температура вспышки 165 - 3000С); недостаточную стабильность и низкую охлаждающую способность в области температур перлитного превращения, а так же повышенную стоимость. Закаливаемость и прокаливаемость стали. Под закаливаемостью понимают способность стали повышать твердость в результате закалки. Закаливаемость стали определяется в первую очередь содержанием в стали углерода. Чем больше в мартенсите углерода, тем выше его твердость. Легирующие элементы оказывают относительно небольшое влияние на закаливаемость. Под прокаливаемостью понимают способность стали получать закаленный слой с мартенситной или троото-мартенситной структурой и высокой твердостью на ту или иную глубину. Прокаливаемость определяется критической скоростью охлаждения, зависящей от состава стали. Если скорость охлаждения больше критической скорости то прокаливаемость будет полной, а если меньше - то неполной.. За глубину закаленного слоя условно принимают расстояние от поверхности до полумартенситой зоны (50% мартенсита и 50% троостита). Диаметр заготовки, в центре которой после закалки в данной охлаждающе среде образуется полумартенситная структура, называют критическим диаметром Dк.
Прокаливаемость тем выше, чем меньше критическая скорость закалки, т.е. чем выше устойчивость переохлажденного аустенита. Устойчивость переохлажденного аустенита повышается, а критическая скорость закалки уменьшается только при том условии, если легирующие элементы растворяются в аустените.
Влияние прокаливаемости на механические свойства можно показать на примере. Заготовка из углеродистой стали с 0,45 %С, диаметром 10мм прокаливается в воде на сквозь. После отпуска при 5500С получается структура - сорбит отпуска. Для такой структуры характерны высокие механические свойства:sB= 800 МПа;s0,2= 650 МПа;d= 13 %;y= 40 % КCU = 1 МДж/м2. При диаметре заготовки 100 мм и закалке вводе скорость охлаждения в сердцевине значительно меньше критической Vк, и там образуется структура из пластинчатого перлита и феррита. Эта структура обладает более низкими механическими свойствами:sB= 700 МПа;s0,2= 450 МПа;d= 13 %;y= 40 % КCU = 0,5 МДж/м2. Способы закалки. Наиболее широко применяют закалку в одном охладителе, такую закалку называют непрерывной. Для уменьшения закалочной деформации применяют другие способы закалки. Прерывистая закалка (в двух средах). Изделие сначала быстро охлаждают в воде до температуры несколько выше Мн, а затем быстро переносят в менее интенсивный охладитель (например масло или воздух), в котором он охлаждается до 200С. Закалка с самоотпуском. В этом случае охлаждение изделия в закалочной среде прерывают, с тем чтобы в сердцевине изделия сохранилось еще некоторое количество теплоты. Под действием теплообмена температура в более сильно охлаждающих поверхностных слоях повышается и сравнивается с температурой сердцевины. Тем самым происходит отпуск поверхности стали (самоотпуск). Ступенчатая закалка. При выполнении закалки поэтому способу сталь после нагрева до температуры закалки охлаждают в среде, имеющей температуру несколько выше точки Мн (обычно 180 - 2500С), и выдерживают в ней сравнительно короткое время. Затем изделие охлаждают до нормальной температуры на воздухе. В результате выдержки в закалочной среде достигается выравниванием температуры по сечению изделия, но это не должно вызывать превращение аустенита с образованием бейнита. Изотермическая закалка. закалку по этому способу выполняют в основном так же как ступенчатую, но в данном случае предусматривается более длительная выдержка выше точки Мн . При такой выдержке происходит распад аустенита с образованием нижнего бейнита. Для многих сталей изотермическая закалка обеспечивает значительное повышение конструктивной прочности. Обработка стали холодом. В закаленной стали, особенно содержащей 0,4 - 0,5 % С, у которой точка Мнлежит ниже нуля, всегда присутствует остаточный аустенит. Для его уменьшения применяют обработку холодом, заключающуюся в охлаждении закаленной стали до температуры ниже нуля, что увеличивает ее твердость. Для уменьшения закалочных дефектов обработку холодом желательно выполнять после закалки, а затем для снятия внутренних напряжений провести отпуск.

Отпуск

Отпуск заключается в нагреве закаленной стали до температур ниже Ас1, выдержке при заданной температуре и последующем охлаждении с определенной скоростью. Отпуск является окончательной операцией термической обработки, в результате которой сталь получает требуемые механические свойства. Он частично или полностью устраняет внутренние напряжения, возникающие при закалке. Отпуск имеет важное практическое значение. Именно в процессе отпуска стальные изделия приобретают свойства, определяющие их поведение в эксплуатации. Температура отпуска обусловливается требованиями механических свойств детали. Низкотемпературный (низкий) отпуск проводят с нагревом до 250°С. Цель - снижение внутренних напряжений. Мартенсит закалки переходит в мартенсит отпуска. Высокая твердость и износостойкость сохраняются. Сохраняется также низкая ударная вязкость. Данному отпуску подвергается металлорежущий инструмент. Среднетемпературный (средний) отпуск проводится при температурах 350-500°С, структура мартенсита переходит в троостит отпуска. Такой отпуск обеспечивает наиболее высокий предел упругости и несколько повышает вязкость. Такой отпуск применяется для рессор, пружин, а также инструмента, испытывающего ударные нагрузки. Высокотемпературный (высокий) отпуск проводят при температуре 500-680°С, структура стали после высоко отпуска – сорбит отпуска. Высокий отпуск создает наилучшие соотношения прочности и вязкости. Закалка с высоким отпуском (по сравнению с нормализацией или отжигом) повышает временное сопротивление, предел текучести, относительное сужение и особенно ударную вязкость. Термообработку, состоящая из закалки и высокого отпуска, называется улучшением. Продолжительность отпуска зависит от конкретных изделий. Обычно в течение 1,5 часов напряжения снижаются до минимальной величины, соответ-ствующей данной температуре отпуска. Некоторым изделиям (измерительный инструмент) делают более продолжительный отпуск.

 

 

67. При обработке деталей на станках заготовки также должны быть правильно ориентированы относительно механизмов и узлов станков, определяющих траектории движения подачи обрабатывающих инструментов (направляющих суппортов, фрезерных и резцовых головок, упоров, копировальных устройств и др.). Погрешности формы и размеров обработанных заготовок определяются отклонениями положений режущих кромок и заготовок от траектории заданною формообразующего движения. Задачи взаимной ориентировки деталей и сборочных единиц в машинах при их сборке и заготовок на станках при изготовлении деталей решаются их базированием.

В общем случае базированием называется придание заготовке гит изделию требуемого положения относительно выбранной системы координат. Применительно к проектированию или сборке под базированием понимают придание детали или сборочной единице требуемого положения относительно других деталей изделия. При механической обработке заготовок на станках базированием принято считать придание заготовке требуемого положения относительно элементов станка, определяющих траектории, движения подачи обрабатывающего инструмента.

Для выполнения технологической операции требуется не только осуществить базирование обрабатываемой заготовки, но также необходимо обеспечить ее неподвижность относительно приспособления на весь период обработки, гарантирующую сохранение неизменной ориентировки заготовки и нормальное протекание процесса обработки. В связи с этим при установке заготовок «приспособлениях решаются две различные задачи: ориентировка, осуществляемая базированием, и создание неподвижности, достигаемое закреплением заготовок. Несмотря на различие этих задач, они решаются теоретически одинаковыми методами, т. е. посредством наложения определенных ограничений (связей) на возможные перемещения заготовки, (механической системы) в пространстве.

Известно, что для полного исключения подвижности твердого тела в пространстве необходимо лишить его шести степеней свободы: трех поступательных перемещений вдоль осей координат и трех вращений вокруг указанных осей. Это достигается наложением связей.

Под связями подразумеваются ограничения позиционного (геометрического) или кинематического характера, накладываемые на движение точек рассматриваемого тела (заготовки или детали). В соответствии с характером ограничений различают позиционные (геометрические) связи, ограничивающие перемещения, и кинематические связи, ограничивающие скорости. В технологии машиностроения приходится иметь дело, главным образом, с позиционными связями, не зависящими от времени и называемыми поэтому стационарными позиционными связями.

Для ориентировки призматического тела в пространстве необходимо соединить три точки a1, a2, а3 его нижней поверхности, не лежащие на общей прямой, двусторонними позиционными связями с плоскостью XOY прямоугольной системы координат (рис. 6.1).

Рис. 6.1. Ориентировка призматического тела в пространстве

При этом двусторонние связи, символизируемые координатами z, могут быть представлены в виде недеформируемых стержней, сохраняющих, однако, способность скользить по плоскости XOY вдоль осей ОХ и OY, не отрываясь от нее и от нижней плоскости А призматического тела. В результате этого призматическое тело лишается трех степеней свободы, т. е., в частности, оно теряет возможность поступательного движения вдоль оси OZ и вращательного движения вокруг осей ОХ и OY. Для лишения тела еще двух степеней свободы, т. е. лишения возможности перемещений вдоль оси ОХ и поворотов вокруг оси OZ, необходимо соединить его боковую поверхность В двумя двусторонними связями (координатами х) с плоскостью YOZ. Для полной ориентировки тела в пространстве необходимо лишить его шестой степени свободы, т. е. возможности перемещения вдоль оси OY; для этого следует соединить поверхность С одной двусторонней связью у с плоскостью XOZ.

В рассмотренном случае недеформируемые стержни (координаты х, у, z)представляют собой двусторонние «идеальные связи», число которых (шесть) соответствует числу степеней свободы, отбираемых у тела при наложении связей. Шесть наложенных двусторонних позиционных связей обеспечивают заданную ориентировку тела относительно системы координат OXYZ и фиксирование тела в данном положении. При установке заготовок на опорные точки приспособлений каждая из опорных точек реализует одну одностороннюю связь в пограничной конфигурации, т. е. обязательно дополняется силой (сила тяжести или прижима).

При этом под «опорной точкой» подразумевается идеальная точка контакта поверхностей заготовки и приспособления, лишающая заготовку одной степени свободы, делая невозможным ее перемещение в направлении, перпендикулярном onорной поверхноcm и.

Необходимо подчеркнуть, что конфигурация системы определяется наложенными на нее идеальными позиционными, а не фрикционными связями. В связи с этим при базировании (ориентировке) заготовки в приспособлении имеют значение числа и расположение идеальных опорных точек, а не фрикционных связей. Число идеальных опорных точек в приспособлении можно условно считать равным числу степеней свободы, отнимаемых у заготовки при базировании в данном приспособлении. Возникающие при установке заготовки фрикционные связи лишают ее подвижности и способствуют ее закреплению, но не участвуют в базировании заготовки.

В приспос


Поделиться с друзьями:

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.052 с.