Баковые масляные выключатели - Выключатели высокого напряжения — КиберПедия 

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Баковые масляные выключатели - Выключатели высокого напряжения

2017-10-21 774
Баковые масляные выключатели - Выключатели высокого напряжения 0.00 из 5.00 0 оценок
Заказать работу

Баковый масляный выключатель показан на рис. 2. В стальном баке 1 на маслонаполненных вводах 2 расположены дугогасительные устройства (камеры) 3. Маслонаполненный ввод (проходной изолятор) служит для проведения токоведущей цепи, находящейся под высоким напряжением, через металлическую стенку или другие преграды. Траверса 4 перемыкает выходные контакты 11 камер (рис. 3). Горячие ионизированные выхлопные газы, выходящие из камер, могут вызвать перекрытие с камер на бак. Для предотвращения этого явления имеется баковая изоляция 5 (рис. 2).
Перемещение траверсы 4 происходит под действием штанги 6, движущейся по направляющим 7 под действием пружин механизма и пружин камер 10 (рис. 3),

 


Рис. 2. Баковый масляный выключатель:

Рис. 3. Дугогасительное устройство бакового масляного выключателя

На выключателе установлены магнитопроводы 8 (рис. 2) со вторичными обмотками трансформаторов тока (в данном случае их четыре). Первичной обмоткой трансформаторов являются токоведущие стержни вводов 2. Для сохранения вязкости трансформаторного масла при низких температурах предусмотрен электрический подогрев масла устройством 9.
Дугогасительное устройство выключателя показано на рис. 3. В прочном стеклоэпоксидном цилиндре 1 расположены неподвижные контакты 2 и 3. Неподвижные контакты 2 я 3 выполнены в виде многоламельного торцевого контакта. Промежуточный контакт 4 сделан в виде сквозной розетки. Для уменьшения износа контакты облицованы металлокерамикой. Камера имеет два разрыва. Первый образуется между контактом 2 и промежуточным подвижным контактом 5, второй — между контактом 3 я контактом 6. Дугогасительная решетка 7 имеет два следующих друг за другом дутьевых канала 8, 9. Во включенном положении эти каналы перекрыты телом подвижных контактов 5 и 6. Вся внутренняя полость камеры заполнена трансформаторным маслом. При отключении контакты движутся вниз под действием пружины камеры 10. В каждом разрыве образуется дуга. По действием энергии дуги масло разлагается на водород, метан и другие газы. В течение сотой доли секунды давление возрастает до 5—8 МПа. Необходимо отметить, что в момент прохождения тока через нуль дуга гаснет и подвод мощности к ней прекращается. Однако энергия, выделенная дугой на протяжении предыдущего полупериода, создает в камере объем газа, в котором запасена определенная энергия. Этот газ находится под высоким давлением. К. моменту нуля тока это давление уменьшается, однако остается еще достаточно большим, чтобы создать газовый поток, охлаждающий дугу и восстанавливающий электрическую прочность дугового промежутка. После того как тело подвижного контакта откроет дутьевую щель 8, создается поток газов и паров масла, охлаждающих и деионизирующих дугу. Следует отметить, что энергия, необходимая для гашения, выделяется самой дугой. Поэтому чем больше ток, тем больше давление в камере и интенсивнее гашение дуги. При токах, близких к номинальному току отключения, длительность дуги не более 0,02 с. Наибольшая длительность горения дуги наблюдается при небольших индуктивных токах (500—2000 А). На рис. 3, показано сечение решетки, повернутое на 99° относительно оси. Процесс деионизации начинается в дутьевой щели 8. Для обеспечения надежной работы камеры во всем возможном диапазоне токов предусмотрена вторая дутьевая щель 9. Выравнивание распределения напряжения между камерами и облегчение отключения емкостных токов обеспечиваются шунтирующими резисторами 10 (рис. 2). Отключение шунтирующих резисторов производится двумя разрывами, образующимися между выходными контактами камер и траверсой. В настоящее время баковые выключатели выпускаются на напряжение 35—220 кВ. Наибольшая мощность отключения 25 000 MB-А.
Обычно бак выключателя заполняется маслом примерно на 2/3 объема. При отключении газ, выбрасываемый из камеры, заставляет слои масла, лежащие над камерами, двигаться с большой скоростью вверх. Воздух, находящийся над маслом, может свободно выходить в атмосферу. Таким образом удается ограничить давление в баке. После отключения масло, двигаясь по инерции, ударяет в крышку выключателя. Этот удар может быть столь сильным, что деформируются крепления бака к фундаменту. Фундамент выключателя должен быть рассчитан на эти нагрузки.
В случаях повреждения механизма или камер выключателя образуется длительно горящая «стоячая» дуга, при этом давление в баке может подняться до опасной величины. Взрыв бака является тяжелой аварией, так как выливающееся из него масло может воспламениться и вызвать пожар в распределительном устройстве. Для предотвращения взрыва бака в его крышке расположены аварийные выхлопные трубы с калиброванными мембранами. При определенном давлении мембраны разрушаются и из выключателя выливается масло, благодаря чему давление в баке снижается до безопасных пределов.
На протяжении многих десятков лет конструкция баковых выключателей улучшалась в направлении уменьшения массы, объема, увеличения отключающей способности. Основными достоинствами этих выключателей являются высокая надежность, простота конструкции камер и механизма, высокая механическая прочность элементов (камер, бака, механизма, вводов), что позволяет использовать эти аппараты в самых тяжелых условиях эксплуатации (при низких температурах необходим подогрев масла для уменьшения его вязкости). По отечественной статистике надежность баковых выключателей выше надежности воздушных и маломасляных выключателей. Большим достоинством их является возможность использования встроенных трансформаторов тока и емкостных делителей напряжения. Простота конструкции не требует высокой квалификации обслуживающего персонала и сложного оборудования. При напряжениях до 220 кВ баковые выключатели по номинальному току отключения не уступают воздушным.
К недостаткам выключателей следует отнести: большие габариты и масса, необходимость периодической очистки масла, что требует наличия специализированного масляного хозяйства; сложность и трудоемкость ремонта и ревизии выключателей с напряжением 110 кВ и выше. Большим недостатком является взрыво- и пожароопасность баковых выключателей. В перспективе они будут заменяться маломасляными и элегазовыми.

 

Маломасляные выключатели - Выключатели высокого напряжения

МАЛОМАСЛЯНЫЕ ВЫКЛЮЧАТЕЛИ

В маломасляных выключателях с целью уменьшения габаритных размеров и массы изоляция в основном осуществляется твердыми материалами. Широко распространены маломасляные выключатели серии ВМП-10 (выключатель масляный подвесного типа), предназначенные для работы при номинальном напряжении 10 кВ. Номинальный ток в зависимости от контактной системы изменяется от 600 до 3200 А. Номинальный ток, отключения достигает 31,5 кА при напряжении 10 кВ, номинальная мощность 550 MB-А. Полное время отключения примерно 0,12—0,13 с при номинальном токе отключения.
Контактная система, ДУ и устройство, превращающее вращательное движение рычагов в поступательное движение контактов, смонтированы в виде единого блока полюса 1 (рис. 4). Этот блок с помощью опорных изоляторов 2 крепится к стальной раме 3. В верхней головке полюса S расположены подвижный контакт и механизм, в нижней 9 — неподвижный контакт. В раме установлены вал выключателя 5, отключающая пружина, пружинный буфер включения и масляный буфер отключения 6. Вал 5 связан с выходным рычагом механизма полюса 7 с помощью прочной изоляционной тяги 4.
При включении изоляционная тяга 4 поворачивает выходной рычаг полюса 7 против часовой стрелки и производит замыкание контактов. Отключающая пружина при этом растягивается, а пружинный буфер включения сжимается. Этот буфер развивает большую силу на небольшом ходе, соответствующем ходу подвижного контакта в розетке, и создает необходимую для гашения дуги скорость перемещения подвижного контакта.
Разрез нижней части блока полюса представлен на рис. 5. Для уменьшения обгорания концы ламелей розеточного контакта 1, подвергающиеся воздействию дуги, облицованы металлокерамикой. Нижняя головка 2 имеет съемную крышку 3, на которой и укреплен розеточный контакт 1, При ревизиях и ремонтах съемная крышка 3 вынимается вместе с розеточным контактом 7.


Рис 4 Маломасляный выключатель ВМП-10

ДУ газового дутья заключено в стеклоэпоксидный цилиндр 4. ДУ собирается из пластин фибры, гетинакса и электрокартона, в которых вырезаны отверстия, образующие каналы и полости для гашения дуги. Каждый из трех каналов (один из них виден на рис. 5) вначале идет горизонтально, а затем вертикально. Все пластины ДУ стягиваются фибровыми или текстолитовыми шпильками. Камера заполнена трансформаторным маслом 7.
Для ограничения давления при больших токах и создания необходимого давления вблизи нулевого значения тока ДУ имеет воздушный буфер А (рис. 5). Давление в ДУ достигает наибольшего значения вблизи максимального значения тока. Под действием этого давления масло сжимает воздух в буфере, в нем аккумулируется энергия. При приближении тока к нулю мощность в дуге и давление резко уменьшаются. Энергия, накопленная в буфере, позволяет создать вблизи нуля тока такое давление, которое необходимо для гашения дуги.
Под действием дуги, возникающей при расхождении контактов, масло разлагается и образующиеся газы создают в камере давление. В тот момент, когда тело подвижного контакта 6 (свеча) откроет первую щель, возникает газовое дутье, и при прохождении тока через нуль возможно гашение дуги. Обдув дуги газами еще более усиливается после открытия свечей второго и третьего каналов.

Рис. 5. Нижняя часть полюса выключателя ВМП-10

Обычно гашение дуги с большим током происходит после открытия первых двух щелей.
При отключении малых токов в камере ДУ давление невелико и дуга не гаснет после открытия всех трех щелей, а затягивается в масляные карманы 5 в верхней части ДУ. Когда подвижный контакт, поднимаясь вверх, входит в первый снизу карман 5', под действием дуги масло в кармане разлагается и газы стремятся выйти вниз, охлаждая дуговой промежуток. Процесс усиливается по мере включения новых карманов. В результате удается надежно отключать критические токи (1—2 кА).
Газы, образующиеся в процессе гашения дуги, выходят через зигзагообразный канал в верхней головке полюса.

Рис. 6. Верхняя часть полюса выключателя ВМТ-110

Рис. 7. Дугогасительная камера встречно-поперечного дутья

Во избежание выброса масла из полюса в его верхней части установлен специальный маслоотделитель.
При напряжении 110 и 220 кВ пока еще широко используются баковые выключатели с поминальным током отключения 20—40 кА. В 75 % случаев ток КЗ не превышает 20 кА и замена их маломасляными выключателями может дать большой технико-экономический эффект.
Созданы маломасляные выключатели серии ВМТ на напряжение 110 и 220 кВ с номинальным током 1000 А и номинальным током отключения 20 кА. Время отключения 0,08, время включения 0,15 с. Эти выключатели работают в цикле АПВ со временем бестоковой паузы 0,3 с. В трехфазном выключателе ВМТ на напряжение 110 кВ (рис. 9) включение всех трех полюсов производится одним пружинным приводом. Верхняя часть одного полюса показана на рис. 6. На этом рисунке 1 — нижний токоподвод, 2— подвижный контакт круглого сечения, 3— дугогасительная камера, 4 — изолятор, 5 — колпак, 6 — расширительный объем, 7— маслоуказатель, 8 — верхний токоподвод, 9 — неподвижный контакт. Внутренняя полость ДУ герметизирована, и наверху находится расширительный объем 6, в котором имеется воздух или азот при давлении 0,5—1 МПа. При отключении емкостных токов ненагруженных линий наличие расширительного объема облегчает гашение дуги, так как масло воздействует на дугу под давлением 0,5— 1 МПа. Сама дуга из-за малости тока не может создать необходимое давление газа.
ДУ выключателя залито трансформаторным маслом. При отключении контакт 2 движется вниз и между контактами 2 н9 загорается электрическая дуга. В камере быстро поднимается давление. В выключателе используется камера встречно-поперечного дутья (рис. 7). Под давлением образовавшихся газов масляный поток подводится из каналов А и Б перпендикулярно дуге. При соприкосновении с дугой масло образует газопаровую смесь, которая вытекает через дутьевые щели В и Г. При этом столб дуги интенсивно охлаждается и дуга гаснет за 0,02— 0,03 с.
В выключателе применен оригинальный механизм привода контактов (рис. 8). Стальные тросы 3 обвивают шкив 1, сидящий на главном валу 2 механизма управления (на него действуют отключающие пружины и включающий привод). Тросы 3 связаны со стеклопластиковыми тягами 4, которые перемещают подвижный контакт 8. Плавный останов механизма в крайних положениях осуществляется масляным 5 и резиновым 9 буферами. Верхние концы тяг 4 связаны с тросом 7, который перекатывается по блоку 6. Простой и легкий механизм позволяет получить высокий КПД и сообщить контактам скорость при включении до 9 м/с, что обеспечивает надежную работу выключателя в режиме АПВ. При этом требуется пружинный привод с относительно небольшой работой включения (2300 Дж). Заводка включающих пружин выключателя за время 20 с производится электродвигателем мощностью 1,1 кВт.

 


Рис. 8. Механизм привода контактов выключателя ВМТ-110

Рис. 9. Общий вид выключателя ВМТ-110

Для обеспечения работы при низких температурах (до —60 °С) выключатель снабжен электроподогревающим устройством. Общий вид выключателя дан на рис. 9. Выключатель на напряжение 220 кВ имеет два разрыва на полюс. Каждый полюс смонтирован на отдельной раме. Номинальный ток отключения выключателя 20 кА.
При напряжении выше 220 кВ целесообразно применение нескольких разрывов, соединенных последовательно. В настоящее время маломасляные выключатели с такой компоновкой строятся на напряжение до 500 кВ.
По сравнению с баковыми и воздушными маломасляные выключатели обладают следующими преимуществами:
1. Они имеют меньшие массу и габаритные размеры при малом объеме масла.
2. ДУ всегда готово к работе независимо от наличия сжатого воздуха.
3. Осмотр и ремонт дугогасительных камер и контактов возможен без слива масла, что обеспечивает удобство эксплуатации.
4. Путем применения унифицированных узлов выключатель довольно легко можно выполнить на напряжение до 500 кВ.
Однако эти выключатели имеют и недостатки:
1. Они менее надежны в работе, чем баковые. Изоляционные детали — рубашки, опорная изоляция — подвергаются повышенным механическим нагрузкам. Номинальный ток отключения маломасляных выключателей пока ниже, чем у баковых.
2. Маломасляные выключатели, как правило, не допускают установки встроенных трансформаторов тока.
Благодаря своим преимуществам маломасляные выключатели найдут широкое распространение в установках с напряжением 6—10 кВ.
При напряжении 35—220 кВ масляные выключатели будут вытесняться вакуумными и элегазовыми.

 

 

Приводы масляных выключателей - Выключатели высокого напряжения


Поделиться с друзьями:

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.008 с.