Фотография получена со спутника «Тирос-2» — КиберПедия 

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Фотография получена со спутника «Тирос-2»

2017-10-17 231
Фотография получена со спутника «Тирос-2» 0.00 из 5.00 0 оценок
Заказать работу

 

На этой фотографии виден кусок Канадской территории в штате Онтарио. В нижнем левом углу снимка отчетливо видна система широких параллельных полос. Это следы лесозаготовок, запорошенные снегом, что увеличило контраст фотографии. Но разве эта совершенно уникальная (одна из сотен тысяч!) фотография могла дать повод для радикального вывода о жизни на Земле! Ведь марсианские астрономы легко могли бы придумать куда более естественные причины для объяснения регулярных деталей, видимых на этой фотографии (например, геологические причины).

Анализируя фотографии, полученные на этих спутниках, с еще более высоким разрешением (например, несколько сотен метров). Саган смог обнаружить несколько деталей, имеющих вид прямых линий. Хорошо, что он заранее знал, что одна такая деталь – это автострада в штате Теннесси. Ведь точно такая же деталь на другом снимке была получена от вполне естественного образования – узкой, прямой песчаной косы в Марокко… Итак, даже такое разрешение недостаточно для бесспорного обнаружения следов разумной деятельности человека на Земле.

Саган обращает также внимание на важный фактор, делающий наши гигантские города невидимыми из космоса: это грязная, непрозрачная атмосфера над такими городами – увы, продукт высокоразвитой цивилизации… Например, американские космонавты ни разу не могли наблюдать из космоса город-гигант Лос-Анджелес! Как говорится, тут комментарии излишни…

Заметим, однако, что существуют спутники специального назначения, позволяющие различать на поверхности Земли детали в несколько метров! Конечно, от таких спутников скрыть следы разумной жизни на Земле уже невозможно.

Такие явления, как ядерные взрывы в нижней атмосфере, которые – увы! – иногда происходят на Земле, безусловно были бы видны с Марса, как кратковременные очень яркие вспышки света. Все же, учитывая относительную редкость ядерных испытаний и быстроту протекания процесса взрыва, вероятность их обнаружения была бы крайне малой. Впрочем, создание специальной весьма оперативной «службы Земли» (подобно существующей у нас «службы Солнца») могло бы привести к успеху. Однако и в этом случае цивилизованные марсианские астрономы вряд ли сочли бы эти кратковременные вспышки света признаками жизни, тем более разумной. Даже мы, живя на Земле, никак не можем такие варварские эксперименты, имеющие конечной целью уничтожение всего живого на нашей прекрасной планете, считать проявлением какого бы то ни было разума…

Итак, очень непросто обнаружить прямые и явные признаки жизни даже на самой ближайшей планете. Впрочем, мы сейчас укажем на один способ такого обнаружения, логически бесспорный. Представим, что наша воображаемая марсианская обсерватория оснащена современными радиотелескопами – устройствами, позволяющими обнаружить и измерить радиоизлучение различных небесных тел.

Марсианские астрономы, подобно земным, исследовали бы радиоизлучение планет. И тут они сделали бы одно потрясающее открытие: на метровом диапазоне волн наша скромная планета Земля посылает в пространство почти такой же мощности поток радиоизлучения, как и Солнце, в периоды, когда на нем нет пятен! Земля на этом диапазоне излучает в миллионы раз больше, чем Венера или Меркурий. Открытие это можно было бы сделать, применяя довольно «скромные» радиотелескопы. Дальнейшие исследования несомненно показали бы, что различные участки поверхности нашей планеты излучают неодинаково, так как была бы найдена периодическая зависимость радиоизлучения Земли от времени, вызванная ее вращением вокруг своей оси. Например, когда к Марсу были бы обращены Африка, Южная и Центральная Азия, уровень радиоизлучения падал бы, а когда Европа и Северная Америка – сильно возрастал. Однако, по-видимому, больше всего марсианских радиоастрономов удивило бы то обстоятельство, что несколько десятков лет назад Земля на метровых волнах излучала в миллион раз слабее. Анализируя все эти факты, умные марсиане поняли бы, правда далеко не сразу, что это радиоизлучение нельзя объяснить действием естественных сил природы, что оно может иметь только искусственный характер. Значит, на Земле есть разумная жизнь! Что и говорить, это было бы замечательным открытием!

В чем же дело? В чем причина столь мощного радиоизлучения Земли? И не мистификация ли это вообще? Нет, мы далеки от попыток шутить на столь серьезную тему. Все описанное вполне соответствует действительности. На Земле имеется несколько тысяч телевизионных передатчиков. Если учесть среднюю мощность каждого такого передатчика (около 20 кВт), ширину полосы частот, в которых происходит излучение, среднюю длительность работы каждого такого передатчика (скажем, 6 часов в сутки), а главное, что все волны телевизионного диапазона (1,5–6 м) совершенно беспрепятственно проходят через земную (так же, как и марсианскую) атмосферу, то мы получим именно ту картину, которую должны были бы наблюдать воображаемые марсианские астрономы.

Автор этой книги произвел соответствующий количественный расчет, на основе которого и была нарисована описанная выше картина марсианских радиоастрономических наблюдений. (Усредненная мощность земного радиоизлучения в метровом диапазоне, как можно подсчитать, близка к 1 Вт/Гц.) Для специалистов, может быть, небезынтересно будет знать, что так называемая «яркостная температура» Земли на метровых волнах, обусловленная работой телевидения, близка к нескольким сотням миллионов градусов, что в сотни раз выше «радиояркости» Солнца на этих волнах в периоды, когда на его поверхности нет или почти нет пятен. Заметим еще, что, кроме телепередатчиков, на Земле есть огромное число радиостанций и прочих устройств, мощно излучающих в ультракоротковолновом диапазоне.

На этом примере мы впервые столкнулись с «космическим» характером жизнедеятельности разумных существ. Эта деятельность привела к тому, что по такой важной характеристике, как мощность и характер радиоизлучения, Земля стала разительно отличаться от всех остальных планет Солнечной системы. Несомненно, что космический характер деятельности есть существенный атрибут развития разумной жизни. В следующих главах этой книги мы уделим этому очень важному и интересному вопросу достаточно много места.

Но означает ли само по себе отсутствие мощного радиоизлучения на метровых волнах от Марса отсутствие там высокоразвитой разумной жизни? Вообще говоря, нет, потому что, несомненно, потери энергии, связанные с телевидением, рано или поздно будут сокращены. Ведь это же варварство, что подавляющая часть энергии, излученной телепередатчиками, бесполезно уходит в мировое пространство! Несомненно, что прогресс науки и техники приведет к тому, что электромагнитные волны будут идти по определенным каналам без ненужного рассеяния. Некоторые шаги в этом направлении уже делаются. Естественно предположить, что высокоразвитые разумные существа будут расходовать электромагнитную энергию не так расточительно, как мы сейчас.

Таким образом, непосредственно обнаружить с достоверностью следы жизни на Земле наблюдениями с Марса весьма непросто. Можно, однако, для этого применить косвенные методы. Дело в том, что развитая жизнь на какой-нибудь планете является могучим фактором, преобразующим ее атмосферу и кору. Не случайно наружные слои нашей планеты, включающие также мировой океан и атмосферу, получили название «биосфера». Согласно исследованиям академика В. И. Вернадского (который ввел в науку само понятие «биосфера»), последняя начинается с глубины 3 км под поверхностью Земли и охватывает почти всю гидросферу и атмосферу. Он пришел к выводу, что все наружные слои земной коры переработаны жизнедеятельностью различных организмов на 99 %. Как мы видели в предыдущей главе, практически весь кислород в земной атмосфере есть продукт фотосинтеза растений. Благодаря своей огромной химической активности атмосферный кислород непрерывно вступает в соединения с различными элементами земной коры. Если бы не непрерывное возобновление кислорода, обусловленное жизнедеятельностью растений, он исчез бы из атмосферы всего лишь за несколько тысяч лет. Можно сделать вывод, что наличие свободного кислорода в атмосфере планеты является признаком того, что на ней имеется жизнь, создавшая биосферу.

Биосфера не только создает кислород в атмосфере планеты. Живые организмы, особенно бактерии, за сотни миллионов лет своей «кипучей деятельности» преобразили лицо нашей Земли. Они могут разлагать даже самые стойкие химические соединения, входящие в состав алюмосиликатов и гранитов, составляющих большую часть земной коры. Так постепенно образовалась почва. Причина деятельности живых организмов, преобразующей лицо планеты, кроется в процессах обмена веществ, являющихся неотъемлемым атрибутом жизни. Эти процессы представляют собой химические реакции весьма большого количества типов. Все это приводит к потенциально огромной способности живых существ к размножению. Основная тенденция развивающейся жизни – переработать как можно больше «неживого» вещества, чтобы этот «строительный» материал использовать для построения новых особей.

Если бы этот процесс не сталкивался с суровыми ограничениями, накладываемыми самой природой, прежде всего ограниченностью «строительных ресурсов», за какие-нибудь сутки масса живого вещества превзошла бы массу планеты. Количество живого вещества в земной коре согласно подсчетам В. И. Вернадского, составляет примерно 1014–1015 т. Это в несколько миллионов раз меньше массы земного шара и только в несколько тысяч раз меньше массы земной коры.

Коль скоро наши воображаемые марсианские наблюдатели обнаружили бы вокруг Земли мощную кислородную атмосферу, они должны были бы с необходимостью сделать вывод о наличии на Земле жизни. Если бы количество свободного кислорода в атмосфере было ничтожно мало, так что его можно было обнаружить только на пределе чувствительности приборов, еще можно было бы выдвигать различные гипотезы о «небиогенном» происхождении земного кислорода. Впрочем, эти гипотезы были бы довольно сомнительны. Но такое огромное количество кислорода, которое наблюдается на Земле, можно объяснить только жизнедеятельностью организмов. Итак, химический состав земной атмосферы позволил бы наблюдателям марсианской обсерватории сделать со всей определенностью вывод, что жизнь на Земле существует. Означает ли, однако, отсутствие в спектре планеты линий и полос, указывающих на наличие в ее атмосфере кислорода, что планета безжизненна? Строго говоря, нет. Именно с таким случаем мы встречаемся при исследовании вопроса о возможности жизни на Марсе.

 

 

16. «Есть ли жизнь на Марсе, нет ли жизни на Марсе…»

 

После того как мы в предыдущей главе имели возможность убедиться, что обнаружить признаки жизни на какой-нибудь планете с расстояния, исчисляемого десятками миллионов километров, – задача далеко не простая, можно проанализировать существующие наблюдательные данные о планетах Солнечной системы для выяснения вопроса о возможной их обитаемости. В первую очередь мы остановимся на самой «перспективной» в этом отношении планете – Марсе.

Нет нужды приводить основные астрономические сведения о Марсе – они достаточно часто приводились в научно-популярной литературе. Интересующихся большими подробностями мы отсылаем к монографии В. И. Мороза «Физика планеты Марс» (М.: Наука, 1978).

Прежде всего рассмотрим, что представляет собой марсианская атмосфера. Прямые спектроскопические наблюдения указывают, что в атмосфере присутствует углекислота CO2 в количестве, примерно в 30 раз большем, чем в земной атмосфере, хотя марсианская атмосфера в 150 раз более разрежена, чем земная на уровне моря.

Каков же химический состав марсианской атмосферы?

Углекислый газ является основной составляющей марсианской атмосферы – примерно 95 %. Измерения, проведенные на американских космических аппаратах «Викинг-1» и «Викинг-2» показали, что остальные 5 % – это аргон и азот. Аргон, или, точнее, его изотоп с атомным весом 40, составляет, как известно, около 1 % земной атмосферы. Он, образуется непрерывно в результате радиоактивного распада изотопа 40K, находящегося в земной коре. Так как Марс и Земля по своим основным планетарным характеристикам (размеры, состав коры, плотность и т. д.) являются «родственниками», следует ожидать, что этот же процесс должен приводить к появлению аргона и на Марсе. Поскольку кислорода в марсианской атмосфере очень мало, то аргон наряду с азотом оказывается одной из главных компонент марсианской атмосферы.

До последнего времени не существовало сколько-нибудь надежных спектроскопических данных, указывающих на наличие в атмосфере Марса водяных паров. Однако в 1963 г. американские ученые Спинрад, Мюнх и Каплан уверенно обнаружили в спектре Марса очень слабые полосы водяного пара. Из этих наблюдений следует, что количество водяных паров в атмосфере Марса составляет около одной тысячной от CO2. Отсюда можно сделать вывод, что его атмосфера отличается исключительной сухостью. В незначительных количествах в ней содержится CO (0,06 %) и озон O3 (10-3 %).

Еще недавно большинство астрономов считали, что так называемые «полярные шапки» Марса суть не что иное, как иней, покрывающий большие области около полюсов планеты. Однако в настоящее время вся совокупность данных наблюдений говорит о том, что сезонные «полярные шапки» – это, главным образом, сухой лед, т. е. затвердевшая углекислота CO2. Так как ось вращения Марса наклонена к плоскости его орбиты почти на такой же угол, что и Земля, там наблюдается смена времен года. Вообще говоря, климат Марса отличается большой суровостью. Средняя температура поверхности этой планеты приблизительно на 40 К ниже, чем на Земле. В течение суток температура почвы колеблется на 60–80 К. Амплитуда годичных колебаний в полярных областях достигает 100–120 К, в то время как в экваториальных она равна 30 К. Температура полярных областей достигает зимой -120 °C.

Следует иметь в виду, что в отдельных областях поверхности Марса микроклимат может существенно отличаться в лучшую сторону от описанных выше весьма суровых «средних» условий. Например, благодаря вулканической активности там могут быть области с более высокой температурой и сравнительно большим содержанием водяных паров. В таких областях условия для развития жизни могут быть, конечно, более благоприятными.

В 1964 г. Синтон и Стронг опубликовали результаты наблюдений Марса в инфракрасных лучах (длины волн 7–13 мкм). На этих волнах наблюдается в основном тепловое излучение поверхности планеты, в то время как на более коротких волнах Маре светит преимущественно отраженным солнечным излучением.

 

Таблица 9

 

Наблюдения Синтона и Стронга производились при помощи большого телескопа обсерватории Маунт Паломар с зеркалом диаметром в 5 м. Это дало возможность исследовать инфракрасное излучение от отдельных участков поверхности планеты. По интенсивности инфракрасного излучения можно было вычислить температуру соответствующих областей в разное время марсианских суток. Температуры поверхности Марса (°C) для разных широт и моментов марсианских суток приведены в табл. 9, из которой видна огромная разница между утренней и дневной температурами. Интересно, что около местного марсианского полдня температура поверхности планеты достигает +28 °C. В то же время температура воздуха на Марсе, даже у самой его поверхности, очень низка и всегда ниже нуля. Уже на высоте около 15 км температура падает даже в экваториальных областях до -100 °C.

Новую эру в исследованиях Марса открыли американские и советские автоматические межпланетные станции «Маринер» и «Марс» (рис. 61), которые, начиная с 1962 г., планомерно посылались к Марсу. Впервые автоматическая станция «Маринер-4» передала на Землю фотографии поверхности этой планеты, полученные со сравнительно близкого расстояния (~ 10000 км). Эти фотографии выявили на поверхности Марса огромное количество кратеров самых различных размеров. Любопытно отметить, что только один астроном на Земле довольно давно предсказал, что поверхность Марса должна быть покрыта кратерами. Это был выдающийся эстонский астроном Эпик, работавший в Ирландии. Однако на это предсказание не было обращено должного внимания. Для всего «астрономического мира» открытие кратеров на поверхности Марса было полной неожиданностью…

 

Рис. 61

Автоматическая межпланетная станция «Марс-1»

Корректирующая двигательная установка; 2 – штырь магнитометра; 3 – остронаправленная атенна; 4 – радиатор системы терморегулирования; 5 – малонаправленная антенна; 6 – панели солнечных батарей; 7 – всенаправленная антенна; 8 – орбитальный отсек.

 

Важные результаты в съемках поверхности Марса были достигнуты в конце 1971 г. американской автоматической станцией «Маринер-9». Поначалу съемкам сильно мешала огромной силы пылевая буря, на много недель закрывшая непроницаемой мглой поверхность планеты. Это дало повод организаторам полета «Маринер-9» для веселых шуток (рис. 62).

 

Рис. 62


Поделиться с друзьями:

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.033 с.