Капнография при гиповентиляции — КиберПедия 

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Капнография при гиповентиляции

2017-10-16 307
Капнография при гиповентиляции 0.00 из 5.00 0 оценок
Заказать работу

 

Гиповентиляция — это состояние газообмена, при котором объем вентиляции легких недостаточен для поддержания нормального напряжения СО2 в артериальной крови1.

 

1Из полного определения гиповентиляции мы намеренно выделили ту его часть, которая имеет непосредственное отношение к капнографии. Вопрос oб обмене кислорода при гиповентиляции обсужден в главах "Пульсоксиметрия" и "Оксиметрия".

 

Три первичных следствия гиповентиляции:

 

Гиперкапния — повышение концентрации СО2 в альвеолах.

Гиперкарбия — повышение концентрации СО2 в тканях и в крови.

Респираторный ацидоз — снижение рН тканей и крови, вызванное увеличением концентрации угольной кислоты.

 

К гиповентиляции могут привести четыре первичные причины:

1. Снижение минутного объема вентиляции, например при угнетении дыхательного центра, слабости дыхательной мускулатуры, резком возрастании дыхательного сопротивления, частичной разгерметизации системы "пациент-респиратор", неадекватной ИВЛ. Хроническая гиповентиляция встречается у пациентов с обструктивными заболеваниями легких и преимущественно обусловлена перенастройкой регуляции дыхания.

2. Повышение метаболической продукции СО2 на фоне прежнего объема вентиляции легких. Чаще всего такая ситуация наблюдается при ИВЛ, когда минутный объем вентиляции фиксирован и подвергается изменению только по решению врача. При самостоятельном же дыхании дыхательный центр пациента следит за соответствием объема дыхания метаболическим потребностям. Однако при угнетении дыхательного центра или слабости дыхательной мускулатуры, например после наркоза, длительной ИВЛ или при миастении, пациент не в состоянии ответить на увеличение продукции СО2 возрастанием объема вентиляции.

3. Рециркуляция выдохнутого газа в контуре наркозного аппарата.

4. Увеличение дыхательного мертвого пространства при прежнем минутном объеме вентиляции. Наиболее подвержено быстрым и значительным изменениям альвеолярное мертвое пространство. Типичный пример — тромбоэмболия легочной артерии на фоне ИВЛ.

 

Капнография пригодна для диагностики гиповентиляции, вызванной первыми тремя причинами. В этих случаях признаком гиповентиляции служит повышение РЕТСО2 сверх 43 мм рт. ст. (или FETCO2 — сверх 5,7 % при нормальном атмосферном давлении) и возрастание высоты волн капнограммы на дисплее.

В третьем случае, помимо подъема РЕTСО2, регистрируется еще и появление СО2 во вдыхаемом газе.

В последнем, четвертом случае концентрация углекислого газа в эффективно работающих альвеолах увеличивается, но разбавление выдыхаемого альвеолярного газа газом мертвого пространства, не содержащим СО2, приводит к снижению РETСO2. (Подробно о различных аспектах данной проблемы см. далее.)

Уменьшение объема вентиляции альвеол сопровождается нарушением эвакуации углекислого газа из тканей в окружающую среду, накоплением СО2 в организме и, соответственно, нарастанием концентрации СО2 в тканях, крови и легких. Концентрация углекислого газа в альвеолах постепенно увеличивается, и по мере ее повышения становится большим количество СО2, удаляемого из организма с каждым выдохом. Рост концентрации углекислого газа в альвеолах, крови и тканях прекращается тогда, когда скорость эвакуации СО2 увеличивается настолько, что уравнивается со скоростью продукции СО2 в тканях. Возникает новое устойчивое состояние газообмена, при котором пониженный объем вентиляции легких обеспечивает удаление из организма прежнего количества углекислого газа за счет повышенного содержания СО2 в выдыхаемом газе.

К гиповентиляции иногда приводит уменьшение дыхательного объема и/или частоты дыхания. В тех случаях, когда дыхательный объем приближается к величине анатомического мертвого пространства, капнограф может показывать нормальную или сниженную величину РЕТСО2 даже при выраженной гиперкапнии. Необходимо помнить, что при поверхностном дыхании РЕТСО2 отражает концентрацию СО2 в переходной зоне между анатомическим мертвым пространством и альвеолами (фаза II капнограммы), а посему интерпретации не подлежит.

 

Величина РетСО2 обладает диагностической значимостью только в тех случаях, когда на волнах капнограммы имеется отчетливое плато (фаза III).

 

В условиях операционной или палаты интенсивной терапии предпочтительнее пользоваться именно капнографами, а не капнометрами, ибо первые предоставляют возможность оценивать качество данных мониторинга по форме капнограммы1.

1В настоящее время оснащение стационара капнометрами, а не капнографами считается организационной ошибкой.

 

Гиповентиляция развивается внезапно или постепенно. И хотя конечный результат — повышение PЕТ2 — в обоих случаях одинаков, в динамике углубления гиперкапнии имеются серьезные различия.

Рассмотрим случай, когда минутный объем дыхания уменьшается быстро и существенно, например, в результате центральной депрессии дыхания при фторотановом наркозе. Нарастание гиперкапнии при такой остро возникшей гиповентиляции происходит несравнимо медленнее, чем развитие гипоксии.

При гиповентиляции количество углекислого газа, задерживающегося в организме за 1 мин, исчисляется десятками миллилитров, что крайне мало по сравнению с общими запасами СО2 в организме, объем которых составляет более 100 л. Несмотря на то что в острой ситуации задержанный СО2 накапливается преимущественно в органах с умеренным и интенсивным кровоснабжением, а основная часть периферических хранилищ СО2 не успевает полноценно включиться в дело, процентный прирост количества СО2 в организме за 1 мин оказывается весьма скромным. Поэтому РЕТСО2 при внезапной гиповентиляции увеличивается очень медленно, от 0,5 до 3 мм рт. ст. в 1 мин (рис. 2.11), а окончательная стабилизация этого показателя на уровне, характерном для нового объема дыхания, наступает не ранее чем через 1 ч от начала гиповентиляции.

Из этого следует важный для практики вывод:

Внезапная гиповентиляция выявляется капнографом не сразу, а лишь через несколько минут, а нередко и несколько десятков минут, которые требуются для заметного подъема концентрации СО2 в тканях, крови и альвеолах.

 

В первые минуты после неожиданного уменьшения вентиляции РЕТСО2 не позволяет составить впечатление об истинном объеме катастрофы, однако устойчивый постепенный рост данного показателя — очень серьезный симптом, побуждающий к немедленной оценке дыхания пациента другими способами: внимательным визуальным контролем, аускультацией, спирометрией, пульсоксиметрией. Единственный монитор, который обнаруживает внезапную гиповентиляцию практически сразу,— быстродействующий оксиметр. К сожалению, в нашей стране приборы, в которых используется этот метод, применяются крайне редко.

Рис. 2.11. Капнограмма и тренд РЕТСО2 при внезапном снижении минутного объема вентиляции.

 

Необходимо помнить, что самое раннее и опасное последствие гиповентиляции — не гиперкапния, а гипоксия, которая способна возникнуть при относительно невысоком РЕТСО2 и которую легко предотвратить увеличением содержания кислорода во вдыхаемом газе.

 

В неясных случаях дополнительная диагностика гиповентиляции непременно проводится на фоне оксигенотерапии.

Для скорейшего привлечения внимания врача к росту PЕТCO2, когда изменение величины этого показателя находится еще на уровне опасной тенденции, нужно устанавливать верхний порог аларма РЕТСО2 всего на 2-3 мм рт. ст. выше его текущего значения.

Если по каким-то причинам минутный объем вентиляции своевременно не был откорректирован, можно ретроспективно оценить темп нарастания гиперкапнии по тренду PETCO2. При выраженной гиповентиляции подъем тренда PETCO2 оказывается более быстрым и существенным, чем при умеренном снижении объема дыхания.

В некоторых случаях минутный объем дыхания уменьшается постепенно, в течение многих часов, дней и даже недель. Это характерно для ряда неврологических заболеваний — миастении, радикулополиневрита, постдифтеритической нейропатии и пр. В таких случаях успевает установиться соответствие между сокращающимся объемом вентиляции и возрастающим уровнем РETСО2.

При постепенном снижении минутного объема дыхания текущая величина РетСО2 точно отражает глубину гиповентиляции.

 

При длительном мониторинге скорость развития (углубления) дыхательной недостаточности можно оценить по тренду PETCO2. Наиболее информативны тренды тех моделей, которые обладают большим буфером памяти, что позволяет накапливать данные за 8-12 ч и более (рис 2 12).

Чаще всего причинами гиповентиляции в операционной служат нарушение работы респиратора и негерметичность контура. Капнография — самый эффективный метод выявления таких проблем (результативность — 25 %). На втором месте — пульсоксиметрия, на третьем — спирометрия. В целом же мониторный контроль обнаруживает лишь менее половины случаев технических неполадок, подобных указанным выше, довольно часто они остаются нераспознанными. Причины недостаточной эффективности мониторинга (1) увеличение альвеолярного мертвого пространства, маскирующего капнографические признаки гиповентиляции, что весьма типично для общей анестезии, и (2) использование во время наркоза повышенных концентраций кислорода, предотвращающих возникновение гипоксемии на фоне гиповентиляции.

 

Рис. 2.12. Капнограмма и тренд РЕТСО2 при постепенно нарастающей гиповентиляции

 

Вторая по частоте причина гиперкапнии у пациента во время общей анестезии — неисправность клапанной системы аппарата (негерметичная установка колпачков, залипание, деформация или отсутствие пластинки клапана, деформация проволочных ограничителей и пр.). Согласно статистическим исследованиям, при регулярном применении капнографа в операционной монитор выявляет такие неполадки в 90 % (!) случаев; в одном случае из ста (1 %) их определяют по клиническим данным, а в 9 % случаев не распознают вообще.

Приведенные цифры лишний раз свидетельствуют о том, что за любым серьезным изменением мониторной картины всегда скрывается реальная причина, которая вполне поддается обнаружению.

При оценке дыхания больного по капнограмме необходимо помнить о том, что в некоторых случаях альвеолярная гиповентиляция сочетается с нормальным и даже сниженным уровнем РЕТСО2 такая картина наблюдается, в частности, при нарушениях легочного газообмена, приводящих к появлению альвеолярного мертвого пространства. При малейших сомнениях на этот счет выполняют анализ газов артериальной крови и сопоставляют РаСО2 с РЕТСО2. Если разница превышает 4-6 мм рт. ст., об адекватности вентиляции по капнограмме судят с осторожностью. (Подробнее об этом речь пойдет далее.)

Мониторинг апноэ

 

Незамедлительное распознавание апноэ — одна из основных целей капнографии.

 

Единственный капнографический критерий апноэ — отсутствие волн на капнограмме.

 

В цифровом выражении это соответствует частоте дыхания, равной нулю (рис. 2.13). При полном отсутствии дыхательных циклов на дисплеях большинства моделей капнографов "замораживается" последнее предшествующее остановке дыхания значение РЕТСО2. В тех случаях, когда больной совершает редкие нерегулярные вдохи (что по клиническим последствиям почти эквивалентно апноэ), величина РЕТСО2 может обновляться.

 

Рис. 2.13. Капнограмма и тренд РЕТСО2 при апноэ

 

При исчезновении дыхательной активности пациента монитор подает звуковой и световой сигналы; есть также модели, которые выводят на экран показания таймера, фиксирующего продолжительность апноэ. Включение аларм-системы происходит через определенный интервал времени после последнего выдоха. Обычно этот интервал составляет 15-20 с; в некоторых моделях его можно регулировать.

Таким образом, в число показаний для капнографии входят клинические состояния, связанные с реальным риском остановки дыхания, а именно:

• критическая патология нервной системы, затрагивающая дыхательный центр и иннервацию дыхательной мускулатуры;

• критическая патология дыхательной мускулатуры;

• применение препаратов, угнетающих дыхательный центр:

- наркоз, глубокая седатация, эпи- и субдуральное введение наркотических анальгетиков;

- передозировка наркотиков, барбитуратов, транквилизаторов;

• высокий риск полной обструкции дыхательных путей:

- коматозные состояния;

- отек или инородное тело верхних дыхательных путей, ла-рингоспазм;

• ИВЛ:

- разгерметизация контура респиратора;

- случайное отсоединение интубационной трубки от адаптера;

- непреднамеренная экстубация;

- перегиб интубационной трубки и другие варианты полной обструкции дыхательных путей;

- отказ респиратора;

• период перевода больного с ИВЛ на самостоятельное дыхание;

• ранний посленаркозный период:

- центральная депрессия дыхания;

- рекураризация;

- западение языка.

 

Во время апноэ подъем напряжения СО2 в тканях и в оттекающей от них венозной крови происходит довольно медленно, по 3-6 мм рт. ст. в 1 мин Запасы же кислорода в организме в условиях апноэ истощаются с катастрофической скоростью, поэтому гипоксическая остановка сердца не исключается и на фоне вполне удовлетворительных показателей обмена СО2. Допустимая длительность апноэ значительно увеличивается, если ему предшествует дыхание или искусственная вентиляция газовой смесью с высоким содержанием кислорода1.

1Подробнее эта проблема рассмотрена в главах "Пульсоксиметрия" и "Оксиметрия"

 

Наиболее распространенные причины апноэ в операционной — полный отказ респиратора и полная разгерметизация контура. Более чем в половине случаев аларм капнографа служит первым сигналом, предупреждающим врача об ухудшении ситуации. Если респиратор снабжен собственным монитором давления в контуре, капнограф оказывается вторым по скорости реакции. Эти мониторы оповещают об осложнении задолго до развития гипоксемии, изменения артериального давления и возникновения аритмии.

Необходимо помнить, что аларм "апноэ" никогда не бывает случайным и обязательно должен побуждать к внимательной оценке ситуации2.

2 Описаны случаи, когда анестезиологи в течение довольно долгого времени наблюдали за изолинией на дисплее капнографа и в конце концов выключали аларм, так и не осознав, что произошла остановка вентиляции. Впоследствии, при "разборе полетов", данный прискорбный факт документально подтверждался трендами. И это далеко не единственный пример того, что психология отношений между врачом и монитором играет не меньшую роль в принятии решений, чем профессиональное образование специалиста.

 


Поделиться с друзьями:

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.049 с.