Пожарная опасность аппаратов огневого действия — КиберПедия 

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Пожарная опасность аппаратов огневого действия

2017-10-15 624
Пожарная опасность аппаратов огневого действия 0.00 из 5.00 0 оценок
Заказать работу

Для производственных целей широко используют открытый огонь, огневые печи, реакторы, факелы для сжигания паров и га­зов. При производстве ремонтных работ часто используют пламя горелок и паяльных ламп, применяют факелы для отогрева замерз­ших труб, костры для прогрева грунта или сжигания отходов. Тем­пература пламени, а также количество выделяющегося при этом тепла достаточны для воспламенения почти всех горючих веществ. Поэтому главная защита от данных источников зажигания - изо­ляция от возможного соприкосновения с ними горючих паров и га­зов (при авариях и повреждениях соседних аппаратов).

Аппараты огневого действия размещают на площадках с соблю­дением разрывов, величина которых в зависимости от характера и режима работы смежных аппаратов и сооружений регламентирует­ся нормативными актами.

К аппаратам огневого действия следует отнести факельные уста­новки для сжигания газовых выбросов. Недочеты в проектировании и устройстве факельных установок могут привести к тепловому воздействию факела пламени на расположенные вблизи здания, сооружения и аппараты с горючими газами и жидкостями, а также к загазованию территории при внезапном потухании пламени. Сле­дует отметить, что факелы общезаводские или общецеховые менее опасны, чем факелы, расположенные непосредственно на аппаратах так как имеют большую высоту вертикального ствола и раз­мещены на значительном расстоянии (60... 100 м и более) от взрыво- и пожароопасных зданий и сооружений.

Факельная установка (рис.) состоит из системы подводящих трубопроводов, предохранительных устройств (огнепреградителей) и факельной горелки. Конструкция горелки должна обеспечивать непрерывность сжигания подаваемого газа путем устройства легкозажигаемого и защищенного от ветра «маяка» (постоянно горящей горелки). Поджигание газовой смеси в дежурной горелке произво­дят с помощью так называемого бегущего пламени (предваритель­но подготовленная горючая смесь воспламеняется электрозапалом, и пламя, перемещаясь вверх, поджигает газ горелки). Чтобы умень­шить образование дыма и искр, к факельной горелке подводят во­дяной пар.

Следует отметить, что побочные продукты и отходы производ­ства выгоднее не сжигать на факельных установках, а утилизи­ровать.

Рисунок 6-Искроуловитель с ис­пользованием силы тяжести: 1 - искроосадительная каме­ра; 2 - выхлопная труба
Рисунок 4 - Инерционный искроуловитель жалюзийного типа: 1 - линия подачи уловленных искр в циклон; 2 - линия очищенных от искр газов; 3 - жалюзийный искроуловитель; 4 - конические кольца рабочей камеры; 5 - га­зопровод; 6 - линия возврата газа в жалюзийную камеру; 7 - циклон для очистки газа от искр
К производственным источникам, зажигания, как было сказано выше, следует отнести высоконагретые продукты горения - газо­образные продукты горения, образующиеся при горении твердых, жидких и газообразных веществ, имеющих высокую температуру (800...1200° С и выше). При такой температуре топочных газов наружная поверхность стенок аппаратов может быть нагрета вы­ше температуры самовоспламенения образующихся в производст­ве веществ. Особенно это относится к металлическим выхлопным трубам топок и двигателей внутреннего сгорания.

Производственным источником зажигания являются искры, возникающие при работе топок и двигателей. Они представляют собой твердые раскаленные частицы топлива или окалины в га­зовом потоке, которые образуются в результате неполного сгора­ния или механического уноса горючих веществ и продуктов кор­розии. Температура такой твердой частицы достаточно; высока, но запас тепловой энергии невелик, так как мала масса искры. Искра способна воспламенить только вещества, достаточно подготовлен­ные к горению, а к таким веществам относятся газо- и паровоз­душные смеси (особенно при концентрациях, близких к стехиометрическим), осевшая пыль, волокнистые материалы.

 

Рисунок 7- Искроуловитель инерционно­го действия: 1 - корпус печи; 2 - топка; 3 - искроосадительная каме­ра; 4 - очистное отверстие

 

 

Искры и нагар при работе дизельных и карбюраторных двига­телей образуются при неправильной регулировке системы подачи топлива и электрозажигания; при загрязнении топлива смазочны­ми маслами и минеральными примесями; при длительной работе двигателя с перегрузками; при нарушении сроков очистки выхлоп­ной системы от нагара.

Устранение причин искрообразования — это поддержание топок и двигателей в хорошем техническом состоянии, соблюдение установленных режимов сжигания топлива, использование только того вида топлива, на которое рассчитаны топка или двигатель, свое­временная их очистка, а также устройство дымовых труб такой высоты, чтобы искры догорали и гасли, не выходя из трубы.

Для улавливания и гашения искр используются искроуловители и искрогасители: осадительные камеры, инерционные камеры и циклоны, турбиновихревые уловители, электрофильтры, а также устройства с использованием водяных завес, охлаждения и разбав­ления газов водяными парами и т. п.

Рисунок 7 - Турбинно-вихревой искрогаситель: 1 - корпус; 2 - неподвижная турбина; 3- траектория движения твердых частиц
Наиболее распространенную группу представляют искроулови­тели с использованием сил тяжести и инерции (в том числе центро­бежных сил). Такими искроуловителями оборудуют дымогазовые сушилки, тракторы, комбайны, автомобили, тепловозы и другие аппараты, механизмы и устройства с использованием двигателей внутреннего сгорания и топок.

Рисунок 8 - схема электрофильтра: А - машинное отделение; Б - фильтр; 1 - питающая сеть; 2 - регулятор напряжения; 3 - трансформатор; 4 - выпрямитель; 5 - проходной изолятор; 6 - выход очищенного газа; 7 - коронирующий электрод; 8 - осадительный электрод; 9 - ввод газа с иск­рами; 10 - бункер
В искроосадительных камерах используется принцип осаждения искр под действием силы тяжести (рис.). При малой скорости движения газа в камере подъемная сила потока, воздействующая на искры, оказывается меньше силы тяжести, и искра оседает. Такой искроуловитель громоздок и недостаточно эффекти­вен. Поэтому в чистом виде искроосадительные камеры применяют редко. Но принцип, положенный в основу их работы, используют во многих искрогасителях.

В искроуловителях инерционного действия на пути движения газового потока устанавливают отражательные устройства в виде сеток, перегородок, козырьков, жалюзи и т. п. Газовый поток, встречая препятствие, изменяет направление движения, а искры, двигаясь по инерции, ударяются о препятствие, дробятся, теряют скорость, оседают или догорают. Эффективность улавливания искр такими приборами возрастает с увеличением массы искр и скоро­сти их движения.

Простейший искроуловитель инерционного действия показан на рис. Следует отмстить, что сетчатые искроуловители малоэф­фективны: отверстия сеток быстро забиваются, сетки прогорают. Более эффективным является инерционный искроуловитель жалюзийного типа (рис.), который улавливает 90...95% всех искр.

В центробежные искроуловители поток газа вводится тангенци­ально, благодаря чему приобретает вращательное винтообразное движение. Под воздействием центробежной силы искры отбрасы­ваются к стенке, дробятся, истираются и догорают. Такие искро­уловители называют циклонами (рис.).

Искроуловители-электрофильтры применяют для улавливания искр из газового потока силами электрического притяжения. Уста­новка (рис.) состоит из источника постоянного тока высокого

напряжения (40...75 кВ) А и электрофильтра Б, основными элемен­тами которого являются коронирующие (отрицательно заряжен­ные) и осадительные (положительно заряженные) электроды. Меж­ду электродами возникает коронный разряд (или корона), проходя через который газ ионизируется, а искры, сталкиваясь с ионами, приобретают в основном отрицательный заряд, притягиваются к осадительным электродам и осаждаются на них. Постепенно на осадительном электроде образуется толстый слой (шуба) отрица­тельно заряженных отложений частиц пыли и искр, экранирующих его. Поэтому периодически электрофильтр отключается от источ­ника тока, электроды встряхиваются, и осевшие частицы падают в бункер. Степень очистки в электрофильтрах очень высока, так как частицы любых размеров приобретают заряд и при достаточной продолжительности очистки оседают на электроде. Использование электрофильтров во взрывоопасных производствах нежелательно, так как их применение связано с появлением мощных источников зажигания электрической природы (электрические разряды, дуга, короткое замыкание и т. п.) Для более тщательной очистки продук­тов горения от искр на пути их движения устанавливают последо­вательно несколько ступеней искроулавливания. В отличие от искроуловителя, искрогаситель не предотвращает выделения искр в атмосферу, а лишь исключает их пожарную опасность. С по­мощью искрогасителя уменьшаются температура искр, их размер, теплосодержание.

Большое распространение для выхлопных систем двигателей внутреннего сгорания получили турбинно-вихревые искрогасители центробежного действия (рис.). Проходя через подвижное ло­пастное колесо (турбину), поток газа приобретает вращательное движение, за счет чего искры отбрасываются к корпусу, где они истираются и догорают.

Возможны комбинированные защитные устройства с улавлива­нием и гашением искр, например искрогаситель с водяной завесой.

Следует отметить, что вопросы улавливания и гашения искр при работе топок и двигателей исследованы недостаточно. Нет мето­дик, позволяющих еще на стадии проектирования топки и двига­теля определять реальную опасность их «искровыделения». Поиск типа и конструкций искроуловителей и искрогасителей ведется, как правило, эмпирически, поэтому необходима дальнейшая разработ­ка теоретических основ их расчета и конструирования.


Поделиться с друзьями:

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.012 с.