Биофизическое обоснование методов ультразвуковой терапии. — КиберПедия 

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...

Биофизическое обоснование методов ультразвуковой терапии.

2017-10-16 304
Биофизическое обоснование методов ультразвуковой терапии. 0.00 из 5.00 0 оценок
Заказать работу

В звуковых и ультразвуковых волнах колебания частиц происходят в том же направлении, что и распространение волны. Такие волны, называемые продольными, представляют собой чередующиеся участки сгущения и разрежения вещества, перемещающиеся в направлении распространения волны. В твердых веществах могут образовываться, кроме продольных, также и поперечные звуковые или ультразвуковые волны.

Рис.2. Схема образования ультразвуковой волны

Расстояние между двумя ближайшими точками волны, колеблющимися в одной фазе (например, между центрами двух соседних участков сгущения или разрежения), называется длиной стоячей волны. Между частотой ультразвуковых колебаний ν и длиной волны l существует зависимость , где V - скорость распространения УЗ-волны в данной среде. Скорость распространения зависит от упругих свойств и плотности среды; в жидкостях она выше, чем в газах, а в твердых телах выше, чем в жидкостях.

В воздухе ультразвуковые волны распространяются со скоростью около 330 м/с. Скорость распространения ультразвука в различных мягких тканях организма находится в пределах 1445 - 1600 м/с, не отличаясь более, чем на 10 % от скорости распространения в воде (около 1500 м/с).

В костной ткани скорость распространения выше - около 3370 м/с. Таким образом, при наиболее часто используемой в ультразвуковой терапии частоте 880 кГц длина волны в воде и мягких тканях тела имеет величину порядка 1,6 - 1,8 мм.

Для создания и поддержания ультразвуковой волны требуется постоянная передача в среду энергии источника колебаний. Эта энергия в процессе колебания частиц среды около положения равновесия передается от одной частицы другой так, что в ультразвуковой волне происходит передача энергии без переноса самого вещества.

Количество энергии, переносимое за 1 с через площадку 1 м2, перпендикулярную направлению распространения волны, называется ИНТЕНСИВНОСТЬЮ УЛЬТРАЗВУКОВЫХ КОЛЕБАНИЙ. Поскольку величина энергии за 1с есть мощность, то интенсивность равна мощности колебаний, приходящейся на 1м2 (Вт/ м2).

Происходящие в ультразвуковой волне колебательные движения частиц вещества характеризуются очень малой амплитудой смещения и чрезвычайно большими ускорениями. Так, например, при частоте 880 кГц частицы тканей тела, в которых распространяется волна с интенсивностью 2 Вт/см2 (максимальная интенсивность, используемая при ультразвуковой терапии), колеблются с амплитудой порядка 3,5∙10-6 см. Максимальное ускорение достигает при этом 90∙106 см/с2, что превышает величину ускорения свободного падения тел почти в 100 тыс. раз.

На колеблющиеся частицы вещества действуют значительные величины переменного (акустического) давления. Так, например, при терапевтическом применении ультразвука с вышеуказанными параметрами амплитуда переменного давления достигает 2,7 атм.

Огромные ускорения и значительные давления, испытываемые частицами среды при ультразвуковых колебаниях, определяют в значительной степени действие ультразвука (в том числе и лечебное) на ткани организма.

При распространении ультразвуковой волны происходят потери энергии на нагрев среды. Интенсивность ультразвука уменьшается при этом по экспоненциальному закону. Для характеристики этого процесса используют понятие - «глубина проникновения». Глубина проникновения равна расстоянию до поверхности, на которой интенсивность ультразвуковой волны уменьшилась в е раз (е≈2,72 - основание натуральных логарифмов). Поглощение энергии усиливается с ростом частоты колебаний, соответственно уменьшается глубина проникновения. На частоте 880 кГц глубина проникновения ультразвуковой энергии в мышечные ткани составляет около 5 см, в жировые ткани - около 10 см, в кости - около 0,3 см. Малые потери энергии в слоях жировой ткани и, следовательно, незначительный их нагрев при достаточном проникновении энергии в мышцы обеспечивают хорошие условия для терапевтического применения ультразвука.

Вместе с тем, распределение ультразвуковой энергии между слоями тканей тела имеет характерную особенность, заключающуюся в интенсивном нагреве костных тканей. Это отличает действие ультразвука от действия электромагнитной волны и должно учитываться при проведении процедуры ультразвуковой терапии.


Поделиться с друзьями:

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.009 с.