Электротерапия: от обезболивания к лечению переломов — КиберПедия 

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Электротерапия: от обезболивания к лечению переломов



Электричество в медицине используется давно. Во многих старинных медицинских трактатах описыва­лось лечение, заключавшееся в прикладывании обла­дающих электрическим зарядом рыб непосредственно к телу пациента. Грубый, но эффективный способ воз­действия на организм давал хорошие результаты и был настолько прост, что нашел широкое применение.

Один из многократно апробированных методов электротерапии - использование электричества для об­легчения боли. Первые устройства - стимуляторы дор­сальных столбов, разработанные доктором Норманом Шили1, нейрохирургом из Висконсина, - имплантирова­лись в спинной мозг пациентов, страдающих трудно из­лечимыми болевыми синдромами. Принцип их дейст­вия можно рассматривать как комбинирование ньюто­новского (хирургического) и эйнштейновского (энерге­тического) методов. Дорсальные столбы - это длинные нервные тракты внутри спинного мозга, которые пере­дают боль и сенсорную информацию из тела в мозг. Общепринятая аргументация в пользу эффективности этих электростимуляторов вполне объяснима с точки зрения теории обоснования методики местной акупунктурной анестезии. Согласно "Теории управления воро­тами", предложенной Мелжаком и Уоллом2, акупунктурное стимулирование периферических нервов на уровне выше входа болевого импульса в спинной мозг вызывает закрытие "ворот", через которые нервные импульсы передают болевые ощущения и сенсорную информацию в мозг. Стимуляторы дорсальных столбов имплантируются в спинной мозг выше входа болевых импульсов и закрывают "ворота" электрическими импульсами, тем самым, блокируя доступ боли к мозгу.

Дальнейшее развитие методов электростимулирова­ния привело к созданию устройства СКНС — проникающих сквозь кожу нервных стимуляторов, действие ко­торых базируется на принципе, аналогичном "теории управления воротами". СКНС вырабатывают слабые электрические импульсы, которые поступают на электроды, расположенные на поверхности тела, и обезболи­вают гораздо эффективнее, чем имплантированная в позвоночник система электростимулирования. "Закры­тие ворот" происходит путем активизации кожных нер­вов, сигналы от которых поступают в спинной мозг вы­ше уровня входа болевых импульсов. Обезболивание с помощью воздействия электрических токов на кожу яв­ляется более безопасной и простой процедурой, чем нейрохирургическая операция. Электростимуляторы СКНС обеспечивают снятие болевых ощущений чисто энергетическими методами, которые по эффективнос­ти значительно превосходят традиционные лекарства и хирургию.



Интересное открытие было сделано в результате ис­следования механизма обезболивания при помощи этих устройств. Оказалось, что воздействие проходящих че­рез кожу слабых электрических токов было более эф­фективно в том случае, если электроды прилагались к определенным участкам кожи - классическим акупунктурным точкам. Традиционная акупунктурная иг­ла стимулировала их точно так же, вызывая местную анестезию или облегчение боли. Это свидетельствовало о том, что акупунктурное обезболивание, по крайней мере частично, связано с выделением самой нервной системой природных болеутоляющих веществ, извест­ных как эндорфины3.

Эндорфины, или эндогенно вырабатываемые мор­фины, - это производимые самим организмом опиумоподобные болеутоляющие. Химические препараты, яв­ляющиеся сильными обезболивающими средствами, были открыты в середине 1970-х годов. Лекарства, по­добные морфию и героину, воздействуют на специальные "наркотические" или эндорфинные рецепторы мозга, большое количество которых располагается вдоль магистралей, передающих болевые сигналы. Ак­тивизация этих рецепторов эндорфинами или введен­ными наркотиками тормозит передачу болевых им­пульсов в центральную нервную систему. Наркотичес­кие "антагонисты", например налоксон, способны тор­мозить действие эндорфинов, уменьшая их влияние на наркотические рецепторы. Эксперименты показали, что блокирующие эндорфины агенты, подобные налоксону, снижают эффективность акупунктурного обез­боливания, а также низкочастотного электростимулирования акупунктурной точки. Это позволяет предположить, что уменьшение боли при классической игольной акупунктуре и электростимулировании аку-пунктурных точек происходит вследствие выделения эндорфинов внутри нервной системы. Впрочем, изуче­ние эндорфинов не данную тему. Необходимо также отметить, что высокочастотное элек­тростимулирование акупунктурных точек для облегче­ния боли, по-видимому, слабо подверженно воздейст­вию налоксона, но тормозится серотонинными антагонистами.



Изучение механизмов спинных "ворот" и действия нейрохимических продуктов, таких как эндорфины и серотонин, открывает новые возможности использова­ния электротерапии для активизации уникальных спо­собностей человеческого организма к самовосстановле­нию. Применение специально модулированных элект­рических сигналов посредством системы СКНС поз­воляет врачам манипулировать электромагнитными энергиями для лечения болезней и облегчения стра­даний.

Не исключено, что самые важные результаты при­менения электротерапии могут быть получены при стимулировании врожденной способности организма к ре­генерации тканей. Во время исследования, проводив­шегося под руководством д-ра Роберта О. Беккера, хи­рурга-ортопеда из Нью-Йорка, были получены инте­реснейшие сведения о том, как электрические токи, проходящие по нервной системе, способствуют регене­рации тканей. Результаты этих экспериментов легли в основу методики ускорения срастания переломов с по­мощью электромагнитных полей.

Ранние работы Беккера были посвящены изучению электрического потенциала в культе конечности подопытных животных, известного как "ток повреждения". Ученому удалось зафиксировать изменение этого по­тенциала в период заживления раны. Изучая процесс тканевой регенерации у саламандр и лягушек, он обра­тил внимание на то, что первые могут полностью вос­станавливать утраченные конечности, а вторые нет. Возможно, лягушки потеряли эту способность в процес­се эволюции. Беккера заинтересовало небольшое разли­чие между "током повреждения" у этих земноводных. Он ампутировал лапы у саламандр и лягушек, а затем измерял электрический потенциал в зонах заживления тканей. У лягушек был обнаружен положительный электрический потенциал с тенденцией постепенного приближения к нулевому значению по мере заживле­ния раны. У саламандр, напротив, после возникнове­ния активного положительного потенциала появлялась отрицательная полярность. По мере регенерации новой конечности значение потенциала возвращалось к нулю.

Единственное явное различие между "токами по­вреждения" заключалось в том, что у саламандры, способной отрастить новую конечность, потенциал коле­бался от положительного к отрицательному.

 

Рисунок 8

Результаты наблюдений за "токами повреждения" в ходе эксперимента по ампутации конечностей у земноводных

Беккер решил выяснить, как искусственное воздей­ствие отрицательным потенциалом на культю лягушки будет влиять на процесс заживления. Он провел опыт, и, к его удивлению, у лягушки отросла полноценная новая конечность.

Идея использования электростимуляции для выращивания новых конечностей или органов является революционной. Воздействует ли электрическая стимуля­ция на механизмы заживления преимущественно на клеточном уровне, или при этом включаются механиз­мы роста, как-то связанные с голографической природой эфирного тела, - до настоящего времени неясно. Беккер пытался применять регистрирующую технику Кирлиана для фотографирования сопровождающего ампутацию "эффекта фантомного листа". К сожале­нию, его усилия не увенчались успехом. Одна из воз­можных причин этого будет рассмотрена ниже, когда мы более подробно опишем электрографическую систе­му Кирлиана.

Беккеровская работа позволила раскрыть новый ме­ханизм передачи информации в нервной системе, что, вероятно, свидетельствует о том, что при заживлении образуется петля обратной связи. Считается, что в действие этого механизма вовлекается сеть глиальных кле­ток и клеток Шванна, которые окружают большинство нервов в организме". Клетки Шванна образуют пульси­рующую оболочку вокруг периферических нервов и от­деляются друг от друга крошечными щелями, располо­женными через регулярные интервалы (известные как утолщения Ранвье), сквозь которые по нервным волок­нам (аксонам) проходит несущий информацию электри­ческий импульс. Ранее предполагалось, что глиальные клетки и клетки Шванна служат для питания близле­жащих нервов, но работы Беккера показали, что они являются проводниками информации. Ее передача осу­ществляется при помощи медленных аналоговых изме­нений величины постоянного тока, а не через цифровой импульсный код, который традиционно считался единственно возможным способом передачи нервных им­пульсов4-5.

Научно-исследовательская работа д-ра Беккера, продолженная д-ром Эндрю Бассеттом6, привела к широкому применению электромагнитных устройств для ускорения заживления поврежденных костей. Сначала была произведена хирургическая имплантация элек­тродов в сломанные кости конечности лошади. Эти эле­ктроды были подключены к специальным источникам питания - с целью воздействия на место перелома сла­бым электрическим током. Быстрое восстановление костных тканей у животных позволило перейти к ус­пешному лечению людей, особенно в ситуациях, когда из-за несрастания фрагментов сломанной кости ампу­тация была единственной альтернативой. Но, как и в случае со стимулятором дорсальных столбов, хирургическая имплантация электродов оказалась необяза­тельной. Для получения желаемого результата было вполне достаточно воздействия на место перелома сла­быми электромагнитными полями извне (фактически сквозь гипсовую повязку). Специальные электроды ежедневно, в течение нескольких недель или месяцев прикрепляются к гипсовой повязке пациента. Обычно это делается перед сном - до тех пор, пока рентген не покажет полного срастания кости.

Данные, полученные в ходе исследований регенера­ции ткани, позволили взглянуть на "энергетические" механизмы клеточного самовосстановления с новой точки зрения. Беккер был пионером бурно развивающейся в наше время отрасли - биоэлектроники. Рассма­тривая клеточные механизмы с позиций электрони­ки и кибернетики, он обнаружил, что на уровне единич­ной клетки микрокристаллические и другие микроэлементы могут участвовать в модуляции межклеточ­ных электрических токов. В некотором отношении этот процесс подобен работе полупроводниковой электри­ческой схемы. Определенные клеточные элементы, например мембраны, могут выступать в качестве кон­денсаторов. Другие внутренние структуры, включая митохондрию, в строение которых входят электриче­ские цепи, молено рассматривать как небольшие бата­реи или источники электрической энергии. Пред­полагается, что существуют системы электронного пе­реключения и передачи тока внутри клетки и между клетками.

"При современных биологических условиях разви­тие живых организмов с момента начала деления клеток сопровождается одноклеточной полупрово­димостью, как у живой пьезоэлектрической матри­цы. Простые базовые ткани (глия, клетки-сателли­ты и клетки Шванна) являются опорными для ней­ронов нервной системы человека. Это было убеди­тельно продемонстрировано на практике приростом кости под воздействием механического напряжения и описанными выше методами лечения переломов... Стимулирование процесса регенерации хрящей и ча­стичная регенерация конечности при помощи слабых постоянных токов - все это части электромедицины, науки, которая изучает способы использования клеточных электрофизиологических энергий, воздейст­вуя на части тела электромагнитным полем7". Контроль за самовоспроизводством клеток, видимо, также включает в себя эти биоэлектронные механизмы переключения. Рак - яркий пример нарушения меха­низма клеточной репродукции, сопровождающегося ог­ромным перепроизводством клеток опухоли. Исследо­вание в Медицинской школе Горы Синай электрических эффектов в имплантированных опухолях (меланома В-16) у мышей показало, что электрические токи могут усилить действие традиционной химиотерапии. Живот­ные, подвергавшиеся воздействию специальных элект­рических токов и химиотерапии, жили почти в два раза дольше тех, в отношении которых применялась только химиотерапия8. Альберт Сент-Джорджи, открывший витамин С, занимается изучением возможности ис­пользования биоэлектронной модели для исследования природы рака. По его мнению, проблема состоит не в са­мой репродукции клеток, поскольку это естественный процесс. Аномалия раковых клеток может заключаться в нарушении функционирования электронных пере­ключающих механизмов, утративших способность "вы­ключать" процесс репродуцирования. Эксперименты с мышиной меланомой показали, что электрические токи и электромагнитные поля воздействуют именно на эти поврежденные механизмы.

Другой исследователь - д-р Бьерн Норденстрем, гла­ва отделения диагностической радиологии в Стокгольмском Королевском институте — в течение послед­них десятилетий также занимался вопросом использо­вания электрических токов для борьбы с раком. У ограниченного числа пациентов он добился полной ремис­сии различных типов рака, давших метастазы в лег­кое8; он считается одним из пионеров игольных биопсий легкого с применением рентгеновских лучей. С помо­щью обычной рентгеновской техники Норденстрем оп­ределял, как нужно разместить платиновые игольные электроды в раковой опухоли легкого. Затем в течение определенного промежутка времени пропускался элек­трический ток (до десяти вольт). Используя такую сис­тему лечения, Норденстрем смог произвести регрессию опухоли, не поддающейся другим видам противорако­вой терапии.

Им была разработана теоретическая модель меха­низма действия электротерапии на опухоль. Норденст­рем обнаружил, что белые кровяные тельца несут отри­цательный электрический заряд. Борющиеся с опухо­лью лимфоциты, по его предположениям, притягива­ются к ней положительным электрическим зарядом платинового электрода, введенного в центр метастазы. Второй, отрицательный электрод, помещается в смеж­ную с опухолью здоровую ткань. Электрическое поле индуцирует ионные изменения ткани, вследствие чего в опухоли образуются кислоты, враждебные раковым клеткам. Этот процесс напоминает действие кислоты в аккумуляторной батарее. В местах возрастания кислот­ности происходит локальное уничтожение красных кро­вяных телец или разрушение их гемоглобина - таким образом в раковых клетках искусственно создается де­фицит кислорода. Кроме того, по мнению ученого, воз­действие положительного электрического поля ведет к перемещению воды из опухоли, которая уменьшается, а окружающая ее ткань набухает и сильнее давит на прилегающие кровеносные сосуды, блокируя приток крови к опухоли.

Д-р Норденстрем считает, что биоэлектрические це­пи в организме человека - часть не известной пока науке системы, связанной с кровообращением. Эти природные электрические цепи включаются при трав­мах, инфекциях, опухолях и даже в условиях нормаль­ной деятельности органов тела. Электрические токи идут через артерии, вены и стенки капилляров, пере­мещая белые кровяные тельца и участвующие в мета­болических процессах ферменты в окружающие ткани и из них. Норденстрем строит свою теорию, исходя из крайне сложного взгляда на "ток повреждения", и счи­тает, что "сбои" в биоэлектрической сети тела человека могут свидетельствовать о развитии рака и других бо­лезней.

Новые теоретические подходы к пониманию приро­ды болезни, такие как биоэлектронная модель, должны способствовать открытию уникальных методов лече­ния, действующих на первичном, клеточном уровне. Являясь некоторым подобием аллопатической схемы взаимодействия лекарства/рецептора, биоэлектронная модель может послужить базой для разработки чисто энергетических видов терапии на клеточном уровне. Вполне возможно, что электромагнитные поля, приме­няемые для сращивания переломов, уничтожения раковых клеток и регенерации тканей, активизируют биоэлектронные механизмы защиты и восстановления на внутриклеточном уровне. По крайней мере на физи­ческом тканевом уровне, вероятно, так и происходит.

Для электротерапии первостепенное значение име­ют частотные характеристики энергетического воздействия. Исследования, посвященные заживлению кост­ных повреждений, показали, что залогом успешного лечения является точный подбор частоты пульса­ции электромагнитных полей. Даже очень небольшое отклонение частоты колебаний может вызвать либо образование остеоцитами костей нового кальциевого матрикса, либо реабсорбцию и вымывание кальция из костей.

Параллельно с использованием электромагнитных полей для обезболивания, воздействия на раковые опухоли и ускорения заживления переломов применяется также обработка поврежденных тканей чисто магнит­ными полями. Недавно в польской больнице Снядецки во Влошчове были проведены медицинские исследова­ния, доказавшие эффективность воздействия высоко­частотных магнитных полей на ревматоидные и деге­неративные артриты9. В большинстве случаев магнито-терапия снижала интенсивность болей, уменьшала на­бухание тканей и улучшала подвижность суставов.

В течение двух лет ревматологи и специалисты по реабилитации обследовали 189 пациентов с ревматоидными артритами (РА) и дегенеративными нарушения­ми подвижности суставов (ДНПС) после лечения высо­кочастотными магнитными полями, произведенного с помощью созданного в Польше аппарата Terapuls GS-200. Доза облучения варьировалась в зависимости от величины спайки, толщины жировой прокладки над этим местом и особенностей патологических процессов. Курс лечения состоял из 10-15 серий по одному или двум сеансам в день в течение 20-25 минут. Исследова­ния показали, что значительное улучшение после магнитотерапии наблюдалось у 73% пациентов с РА и 67% с ДНПС, а в контрольной группе — после коротковолно­вой диатермии - только у 44,6%. Многие европейские, индийские и американские исследователи добились оп­ределенных успехов, применяя варианты магнитной терапии для лечения некоторых заболеваний. Как мы увидим в последующих главах, эффективность такого лечения создает уникальные предпосылки для исполь­зования нетрадиционных форм энергетической меди­цины.

Обращение к электро- и магнитотерапии не только ознаменовало появление новых способов борьбы с болью и различными заболеваниями, но и позволило глубже взглянуть на клеточные механизмы исцеления. Это лишь один из шагов на пути от традиционной аллопа­тической модели лекарств и хирургии к чисто энергетическому методу лечения человека. Вышеупомяну­тые способы применения электромагнитной энергии позволяют предположить, что так называемые "погра­ничные области" медицины фактически являются воплощением принципов энергетического лечения. Применяемые в них энергии - это тонкие энергии соб­ственно жизненной силы со многими ее октавами и обертонами.

Чтобы убедить ученых в существовании этих тон­ких жизненных энергий и возможности их использования, необходимо решить серьезную проблему - разра­ботать соответствующую методику исследования и диагностики. Кирлиановская фотография - достаточно серьезный довод, но нельзя сказать, что современ­ная традиционная медицина готова принять его в ка­честве доказательства. Однако, постоянно совершенст­вующиеся инструментальные средства диагностики открывают путь к реализации этой возможности. Чтобы проследить процесс модернизации диагности­ческих устройств, мы должны возвратиться к отправ­ному пункту данной главы — открытию рентгеновских лучей.






Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...



© cyberpedia.su 2017 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав

0.009 с.