Главный становится не Главным — КиберПедия 

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Главный становится не Главным

2017-10-11 191
Главный становится не Главным 0.00 из 5.00 0 оценок
Заказать работу

Административным кредо М.К. Янгеля во взаимоотношениях со смежниками и сослуживцами был принцип: не применять власть и крайние меры до тех пор, пока другие средства не использованы полностью. А когда уже ничего не помогает, то пользоваться ею решительно и в максимальной степени -
"на полную катушку". И если совещание в самолете, пожалуй, было последней попыткой "мирным" путем разрешить возникшую коллизию, то воинственная позиция, занятая Е.Г. Рудяком на Совете Обороны, стала последней каплей, переполнившей чашу терпения: Главному стало совершенно ясно, что дальнейшие уговоры и доказательства преимуществ новизны, тактической и технической целесообразности минометного старта потеряли всякий смысл и "употребления власти не только не избежать, но и этот момент наступил".

Поняв, что пути с Главным конструктором шахты разошлись окончательно и бесповоротно, и чтобы не терять времени, Янгель предпринимает совершенно неожиданный маневр: выражаясь языком шахмат, делает своего рода "конструкторскую рокировку". Он добивается решения вышестоящей инстанции – Министерства, выпустившего "хитрый" приказ, согласно которому над эскизным проектом стартового комплекса ракеты начинает, якобы, работать московское конструкторское бюро, возглавляемое Главным конструктором
В.Н. Соловьевым. А разработка и выпуск чертежно-технической документации остается, по-прежнему, за конструкторским бюро, руководимым Е.Г. Рудяком.

"Изящность" хода Главного в этой "конструкторской игре" заключалась в том, что он ни на минуту не допускал мысли расстаться при решении задачи создания нового вида старта с коллективом опытнейших ленинградских специалистов, успешно разработавшим до этого не один шахтный комплекс.
Однако отчетливо понимал и то, на какой основе возможно это сотрудничество. В сложившейся обстановке, в борьбе, когда техника перемежалась с политикой, надо было выиграть время.

Прекрасно сознает в этой ситуации свою роль и В.Н. Соловьев, который уже успешно сотрудничает с янгелевским конструкторским бюро, но только по космической тематике. Поэтому его КБ начинает якобы работать над эскизным проектом минометного старта, но эти проработки ненамного продвинулись, поскольку от него не требовалось большего по сравнению с эскизами
В.М. Макушина, продемонстрированными М.К. Янгелю.

Между тем получившие импульс сотрудники конструкторского бюро организовали буквально мозговой штурм по переделке проекта разрабатываемой ракеты под минометный старт, и у них вроде бы тоже все начало получаться. Так, благодаря решительным действиям Главного проектные работы были направлены в нужное русло и запущена вся система смежных организаций.

А М.К. Янгель, получив передышку, приступает к решению основной на этом этапе задачи, от которой зависел успех всего дела.

Поняв, что пути с тем, кто его не поддерживает, разошлись окончательно и бесповоротно, он предпринимает решительные действия и добивается отстранения от работы главного оппонента - Е.Г. Рудяка. Правда, для этого, по собственному признанию М.К. Янгеля, пришлось много раз водить ленинградского конструктора в Центральный Комитет КПСС к Д.Ф. Устинову, ведавшему оборонной техникой. В результате новым Главным конструктором пускового шахтного комплекса вместо Е.Г. Рудяка становится его бывший заместитель В.С. Степанов.

Однако и с новым Главным пришлось вначале тоже повоевать. Гипноз невозможности решения некоторых принципиально новых вопросов довлел не только над Е.Г. Рудяком. В конце концов, не будучи связан шорами старых концепций, он понял и прочувствовал все преимущества идеи М.К. Янгеля и стал их активным проводником. Именно при техническом руководстве
В.С. Степанова было воплощено в жизнь принципиально новое направление в решении стартовых позиций.

Конструкторское бюро под новыми знаменами не только успешно справилось с поставленной задачей, но и реализовало в своих проектных разработках ряд принципиально отличных конструктивных решений и технологий. В частности, вместо ставших традиционными металлических амортизаторов, создававших жесткие условия для передачи нагрузок при воздействии ударной волны атомного взрыва, впервые были применены "мягкие" пневмокордовые амортизаторы. А для модернизации существующих шахт под минометный старт предложили эффективный лифто-контейнерный способ бетонирования, благодаря которому значительно повысилась защищенность стартовых комплексов. Ну и само собой разумеется: при минометном старте диаметр шахты удалось максимально приблизить к диаметру ракеты. В результате и сама шахта, и защитная крыша стали иметь меньший диаметр, то есть при одних и тех же затратах материала возникла возможность сделать их значительно прочнее и даже меньшей массы. А открыть такую поворотную крышу, даже заваленную грунтом, несравненно легче.

Показательно, что когда "война" Главных закончилась, между коллективами смежников установились настоящие творческие и даже дружеские взаимоотношения, диктуемые общностью решаемой задачи. А авторитет М.К. Янгеля в коллективе смежников был столь же безоговорочным, как и в своем собственном, что и нашло свое отражение в успешном решении всех самых сложных вопросов, возникающих в процессе проектирования и отработки стартового комплекса.

МОЗГОВОЙ ШТУРМ

Как бы ни была совершенна вновь создаваемая система - это только сверкающая часть айсберга, а все трудности, которые пришлось преодолеть на пути к цели, остаются за кадром. И родиться этот айсберг мог только на основе творческого сплава дерзкого замысла Главного - генератора идей - и увлеченности и преданности делу талантливых исполнителей, которым судьба предоставила возможность раскрыть в полную силу свои потенциальные возможности. Именно этот человеческий сплав и оказался определяющим при проектировании. Для реализации минометного старта пришлось решить ряд очень трудных, принципиально новых схемных и конструкторских задач.

И, как всегда, Главный сделал ставку на молодежь, и ее лидеров. Благодаря их неординарному инженерному мышлению, нестандартному подходу к решению возникающих задач удалось успешно выбраться из многочисленных тупиковых ситуаций, которые неизбежно порождает любая новая идея. Предлагавшиеся оригинальные подходы к конструированию отдельных функциональных систем выполнялись фактически всегда на уровне изобретений и становились типовыми в отрасли.

Это был титанический труд увлеченных людей в урочное и неурочное время по 12 часов и более в сутки, изнуряющие командировки, и снова работа, работа, и никого в этой работе не надо было подгонять. Интерес к делу цементировался важностью решаемой задачи.

По прошествии трех десятилетий, когда события тех дней стали достоянием истории, сегодня весь ход проектно-конструкторской реализации идеи минометного старта (а в нем много было интересного и поучительного) в деталях и особенно в персоналиях восстановить крайне трудно, и в отдельных случаях и вообще невозможно. И причины тому банально просты. С одной стороны, энтузиасты тех свершений, беспредельно увлеченные делом, почти напрочь были лишены амбициозности и мало заботились о своей популярности в будущем. А с другой - как метко заметил поэт: "одних уж нет, а те далече". И все же, поскольку за любым техническим решением стоят конкретные люди, назовем фамилии некоторых непосредственных участников тех событий. Ведь не все они познали сладость признания личных заслуг и документального узаконивания своей неординарной деятельности.

Общее руководство всеми проектными работами осуществлялось
Э.М. Кашановым. Собственно идея транспортно-пускового контейнера и опорно-ведущих поясов на ракете принадлежит Г.А. Кожевникову. Расчет динамики и газодинамики старта, а также расходных характеристик пороховых аккумуляторов давления был проведен П.П. Логачевым, В.П. Лисевичем, В.И. Маматовым. П.П. Логачев предсказал также возможность взрывного догорания ПАДов. Разработка пороховых аккумуляторов давления в целом легла на плечи
С.Н. Грехова, а их конструктивное решение было выполнено Ю.П. Волковым, Е.П. Гуртовым, Э.М. Кокоулиным, В.В. Оглихом. Вся проектно-конструкторская и экспериментальная разработка осуществлялась Е.Н. Канунниковым,
С.Я. Козиным, С.А. Уваровым и В.Н. Федоровым. Заключительный этап, связанный с экспериментальной отработкой в процессе проведения бросковых испытаний, проводился под руководством С.Я. Козина, С.А. Матюшенкова.

Однако такое простое перечисление основных этапов не проясняет сути тех оригинальных решений, благодаря которым состоялся минометный старт. Поэтому остановимся на некоторых из них, которые, как штрихи к общей характеристике, воссоздадут (пусть частично) ту невиданную конструкторскую эпопею.

В принятой схеме выбрасывания ракеты из шахты роль поршня выполнял специальный поддон. Справедливости ради следует отметить, что это название лишь в малой степени определяло роль, отводимую ему, в реализации минометного старта. Как уже отмечалось выше, терминология и в этом случае (в отличие от конструкции, которую она характеризует) далека от совершенства.

В действительности поддон представлял достаточно сложную пространственную тонкостенную конструкцию с диаметром, равным диаметру ракеты, а длина его составляла несколько метров. Исходный объем, который начинал заполняться газами, образовывали два сферических сегмента. Один из них - нижний - являлся, по сути, днищем контейнера, на нем располагались пороховые аккумуляторы давления. Ответный сегмент - днище поддона - выполнял роль поршня. Вместе верхнее и нижнее днища представляли фигуру чечевицеобразной формы. Рабочим телом, выталкивающим ракету из шахты, являлись газы, вырабатываемые пороховыми аккумуляторами давления.

Кроме разработки их конструкции, что само по себе представляло отдельную проблему, требовалось обеспечить оптимальный режим нарастания давления. Расчеты показали: одним аккумулятором давления это сделать невозможно. Поэтому пришлось предусмотреть второй, включавшийся через определенный промежуток времени после начала работы первого. Применение двухступенчатой схемы позволило обеспечить прогрессивный расход, следивший за увеличением объема, заполняемого газами в процессе выхода ракеты из шахты. В начале отработки ПАДов масса заряда на основании расчетов была определена в 75 килограмм. Но оказалось, что не учтены тепловые потери. И начался длительный процесс отработки: надо делать заряд, а его поставлял подмосковный НИИ, оснастку же для изготовления заряда делали в Днепропетровске. Итак, в конце концов, экспериментальным путем нашли потребную массу. Она оказалась равной 120 килограммам.

Об эффективности работы пороховых аккумуляторов давления свидетельствует такой факт: найденный суммарный вес заряда смесевого твердого топлива легко выталкивал из контейнера массу в 210 тонн со скоростью до
25 метров в секунду на высоту до 15-20 метров.

Однако прежде, чем отрабатывать режим нарастания давления, необходимо было установить величину максимальной перегрузки, возникающей в процессе выброса ракеты из контейнера. Ученые ЦНИИмашиностроения на основании проведенных исследований предлагали принять пятикратное увеличение веса. Анализ показал, что в этом случае сильно перетяжелялся корпус ракеты.

В конце концов, остановились на значении, равном 2,5. Эта перегрузка выбиралась на основе оптимизации по многим параметрам: скорости выхода из шахты, дальности полета, потребной массы для обеспечения несущей способности конструкции. Последнее обстоятельство имело особое значение, поскольку важно было для изготовления корпуса использовать традиционно применяемые материалы и не прибегать к высокопрочным типа специальных сталей.

При запуске ПАДов неизбежно взрывное догорание газов в воздухе, находящемся в чечевицеобразном пространстве, образуемом днищами поддона и контейнера. Эта опасность остроумно исключалась с помощью специальной гибкой разделительной диафрагмы - мембраны, закрепленной на нижнем днище.

В исходном положении диафрагма лежала на нижнем днище. Для перевода ее в верхнее положение, с целью вытеснения атмосферного воздуха, пришлось предусмотреть еще один пороховой аккумулятор давления. По мере нарастания давления пороховых газов диафрагма перекладывалась с нижнего днища к верхнему, вытесняя атмосферный воздух, при этом рабочий объем полностью заполнялся пороховыми газами аккумуляторов давления.

В процессе проработки конструкции вопросы нарастали, как снежный ком. Новые решения порождали, в свою очередь, очередные и новые проблемы. Так обнаружилось, что разделительная мембрана, исключавшая взрывное догорание, в силу собственной нежесткости на изгиб провисала при транспортировке и в процессе заполнения газами перекрывала отверстие для выхода воздуха, который она должна была вытеснять. Потребовалось над выходным отверстием соорудить специальный зонтик, устранявший выявленный недостаток. И это решение тоже было признано изобретением.

Много хлопот доставили ударные нагрузки, действующие на двигательный отсек первой (на конструкторском жаргоне - "хвост") ступени. Причиной были газы ПАДов. Отражаясь от стенок контейнера, они догоняли ракету и создавали дополнительные усилия, приводившие к разрушению "хвоста". Поэтому кривую, обеспечивающую прогрессивный расход газа, пришлось выбирать и с учетом фактических ударных нагрузок. Интенсивность нарастания давления должна была подчиняться противоречивым требованиям: с одной стороны из условий прочности ее следовало выбирать минимальной, но в то же время и такой, чтобы обеспечить достижение необходимой высоты в момент начала работы двигателей.

Остро стоял вопрос о запуске двигателя первой ступени в состоянии невесомости. Главный конструктор двигательной установки В.П. Глушко приводил веские доводы, что в том случае, когда перегрузка становится равной нулю, под действием сил упругости сжатый до этого корпус ракеты начинает "разжиматься". В результате возникают колебания, которые могут инициировать нестационарные колебательные процессы жидкости в топливных магистралях, что может привести к ненормальной работе двигателя. Однако эти опасения не подтвердились.

Для обеспечения надежного запуска двигателя первой ступени было найдено эффективное решение - горячий наддув баков, что позволило избавиться от ранее применявшейся сложной газобаллонной системы наддува баков. С этой целью через специальный электрогидроклапан в бак горючего, когда ракета еще находилась в пусковой установке, впрыскивался окислитель.
В результате возникало поверхностное горение на уровне зеркала горючего.
В момент повышения давления в подушке бака до требуемой величины срабатывал датчик контроля заданного уровня давления, который и отслеживал процесс. При запуске двигателя включался жидкостный газогенератор, и система подачи топлива начинала работать в нормальном режиме.

Сложной оказалась "проблема поддона": что с ним делать после выхода ракеты из шахты? Ведь это очень большая масса металла, которая выведет шахту из строя, если упадет обратно. Орешек был не из простых. Начались поиски того единственного оригинального подхода, который наиболее эффективно выполнил бы поставленную задачу. Говорят, что, когда к мудрецу обратились за советом, "как поймать тигра?", то он ответил: "Поймайте двух и одного выпустите". При решении "судьбы" поддона таких "тигров" было три.

Первое предложение сводилось к тому, чтобы поймать и удержать поддон, закрыв тем самым отверстие шахты. Однако расчеты показали, что для этого потребуются сооружения огромной материалоемкости. В.С. Степанов предложил закрыть шахту специальной крышей. И этот путь оказался тоже практически нереализуемым. Масса только одной крыши получалась около 460 тонн. Под такой тяжестью прежде всего развалилась бы шахта. В конце концов, альтернативы уводу поддона в сторону не оказалось. Решить эту проблему удалось с помощью установленного на нем порохового ракетного двигателя.

Идея увода поддона в сторону в дальнейшем при проектировании последней ракеты конструкторского бюро получит интересное развитие при создании боевого железнодорожного ракетного комплекса. Связана она с отводом в сторону от транспортно-пускового контейнера раскаленной струи газов ракетного двигателя путем наклона самой ракеты в момент запуска и начальный момент работы двигателя. Пуск ракеты в этом случае производился из контейнера, который в рабочем положении являлся, по сути, вертикально стоящей трубой, закрепленной ровно настолько, насколько платформа "закреплена" на железнодорожных рельсах. Понятно, что боковое возмущение, действующее на контейнер, могло свободно опрокинуть заодно с ним и саму платформу вагона, да и не только ее. Поэтому, несмотря на то, что запуск двигателей после выхода ракеты производился на достаточной высоте, во избежание любых непредвиденных обстоятельств решили изменить траекторию движения ракеты после выхода ее из контейнера, т.е. развернуть - наклонить на некоторый угол по отношению к оси контейнера. В результате струя газов двигателя истекала в сторону, не попадая на контейнер. Для этих целей на ракете установили пороховой ракетный двигатель, который и производил разворот ее на заданный угол.

Однако принятое решение не было удачным. Пороховой ракетный двигатель, оставаясь на ракете, во время дальнейшего полета становился дополнительным грузом, что, естественно, отражалось на дальности полета.

Как всегда бывает в таких случаях, если решение несовершенно, то должно существовать обязательно лучшее и обязательно более простое. Иначе оно не будет лучшим. И такое решение нашли. Попытаемся восстановить логику мышления, приведшую к необычному повороту мысли, в виде вопросов и ответов на них.

Отправное положение для развития новой идеи строилось в виде силлогизмов:

- Зачем обязательно нужно "возить" в полете дополнительный груз в виде уже выполнившего задачу двигателя?

- Но тогда его не следует устанавливать на ракету.

- А зачем в этом случае разворачивать ее?

- Но почему обязательно одну ракету?

- Значит вместе с поддоном?

И это уже было то решение, которое придавало конструкции совершенно новое качество. Пороховой ракетный двигатель перенесли на поддон. В результате не только была устранена возможная причина опрокидывания платформы с контейнером, но и ракета "избавилась" от лишнего веса.

Реализация минометного старта поставила в повестку дня много других принципиально новых задач. В частности, решен был и вопрос прочности и надежности промежуточного днища, разделявшего бак горючего и окислителя. Как часто бывает в таких случаях, возникшая проблема послужила толчком для создания новой технологии. Материаловеды предложили материал, состоявший из трех слоев - триметалл, который и был впервые применен в конструкции баков.

В любом новом деле всегда много неясного, и поэтому не обходится порой без того, что отдельные проблемы оказываются надуманными. Ведь само по себе явление должно оцениваться и количественными показателями при его проявлении в конкретной ситуации. Именно таким оказался вопрос об отраженной струе, высказанный аэродинамиками. По их версии, при запуске основного двигателя в состоянии невесомости реактивная струя газов, попадая в контейнер, должна была отражаться "от свистка" и, догоняя ракету, греть ее со всеми вытекающими последствиями. Однако результаты проведенных предварительных испытаний не подтвердили эту версию: ракета успевала улететь, а газы оказывались не так уж и опасны. Как говорится: не так страшен черт, как его малюют!

Новое направление было настолько необычным и настолько не укладывалось в традиционные представления обо всем предшествующем опыте создания ракетных комплексов, что инерция сложившегося мышления приводила порой к "пикантным" ситуациям. Так, после доклада на совещании у Главного конструктора ведущего проектанта Э.М. Кашанова о проблемах, возникающих при минометном старте ракеты, в частности, о запуске двигателей после выброса ракеты из пускового контейнера, один из заместителей М.К. Янгеля вдруг неожиданно задал недоуменный вопрос:

- А какая на земле может быть невесомость?

Как говорится в таких случаях: комментарии излишни.

ОДА КОНТЕЙНЕРУ

Сердцевиной всего проекта минометного старта стал, несомненно, транспортно-пусковой контейнер. Выше уже частично отмечалось, какие трудности пришлось при этом преодолеть в процессе его создания и экспериментальной отработки. Как было сказано, прямо или косвенно они были связаны с задачей выбрасывания ракеты и запуском жидкостного ракетного двигателя большой мощности в условиях резкого сброса осевой перегрузки при выходе ракеты из ТПК и наступающей затем невесомости, воздействием прямых и отраженных от пусковой установки газовых струй, возникающих при раскрытии контейнера и запуске маршевого двигателя, влиянием начальных возмущений на дальнейший полет ракеты, конструированием и технологией изготовления узлов и агрегатов.

Практически все решения, возникшие в процессе проектирования контейнера, были признаны изобретениями.

Для того, чтобы оценить масштабность и роль, которую суждено было сыграть контейнеру в реализации новой идеи, необходимо охарактеризовать его место и те функции, которые он взял на себя в общей схеме минометного старта.

По своему назначению транспортно-пусковой контейнер выполнял роль ненарезного (отсюда, наверное, и название "минометный старт") артиллерийского ствола неведомых доселе циклопических размеров: диаметр более трех, а длина до сорока метров. Кстати, диаметр пушки, из которой Жюль Верн "стрелял" по Луне, тоже приближался к трем метрам.

В конструктивном отношении - это цилиндрическая оболочка с гладкой внутренней поверхностью, механически точно обработанная. Диаметр контейнера выбирался из расчета обеспечения минимальных зазоров (порядка
150-200 миллиметров) между корпусом ракеты и ТПК.

Но самым необычным являлся "снаряд" внутри этого ствола пушки: огромнейшая, массой более двухсот тонн межконтинентальная баллистическая ракета стратегического назначения, которая двигалась в контейнере не собственным ходом, а по законам внутренней баллистики снарядов под действием газов, образуемых сгоранием порохового заряда в замкнутом "заснарядном" пространстве.

Продолжая аналогию дальше, следует отметить, что роль ведущего медного пояска, запрессованного в канавку на корпусе снаряда и делающего невозможным прорыв газов при выстреле, выполняла специальная манжета,
укрепленная на поддоне, а четыре обтюрирующих кольца, установленные по длине корпуса, обеспечивали центрирование ракеты при ее движении.

Контейнеру суждено было сыграть в будущем революционную роль и в технологии подготовки ракеты при постановке на боевое дежурство. Отныне для старта нужно будет осуществить лишь одну операцию - нажать на кнопку "Пуск". Связано это было, в первую очередь, с перераспределением ролей между транспортно-пусковым контейнером и шахтой, имевшем далеко идущие последствия. Именно в контейнере сконцентрировались все конструктивные решения, реализующие преимущество идеи минометного старта.

Отныне все, что размещалось в оголовке шахты, становилось принадлежностью контейнера. На его внешней поверхности размещалась система электропитания, блоки аппаратуры управления и пуска ракеты, другие системы, а также узлы крепления контейнера в стволе шахты.

Что же это дало?

По старой технологии ракету с завода-изготовителя транспортировали на полигон в монтажно-испытательный корпус, в котором проводились комплексные проверки функционирования всех систем. Только после этого ее вывозили на старт, где предстояла сложная операция опускания, установки и центровки в шахте.

Отныне вся аппаратура оголовка шахты стала принадлежностью контейнера. Ее разместили на внешней поверхности последнего. В контейнер прямо на заводе-изготовителе "втягивалась" ракета и, после необходимых проверок на функционирование, в таком укомплектованном виде сборка как ампула транспортировалась прямо на стартовую позицию. Одновременно туда прибывал и комплект контролирующей аппаратуры.

Контейнер с ракетой опускался в шахту и подвешивался на специальных амортизаторах. Производилось подсоединение необходимых коммуникаций, проверка работы всех систем, и никаких дополнительных проверочных работ после транспортировки контейнера в позиционный район не требовалось.
В результате отпадала необходимость в таком огромном по площади и высоте дорогостоящем здании, каким является монтажно-испытательный корпус. Применение контейнерной схемы обслуживания значительно упростило и удешевило эксплуатацию ракетных комплексов. Пространство, занимаемое ранее оголовком, залили железобетоном, что значительно повысило защищенность шахты.

Работоспособность и надежность функционирования контейнера при пуске ракеты была подтверждена в процессе летных испытаний. Однако для транспортно-пускового контейнера это был, по сути, первый этап его отработки. Ведь задача состояла не только в том, чтобы выбросить ракету, но и обеспечить совместно с шахтой надежную защиту ракеты в случае атаки противника в процессе длительного боевого дежурства.

Самый сложный экзамен для контейнера состоялся в октябре 1976 года на специальном семипалатинском полигоне, где впервые были проведены испытания на защищенность стартовой позиции и унифицированного командного пункта при воздействии поражающих факторов ядерного взрыва.

Позиция для испытаний включала унифицированный командный пункт, две шахтные пусковые установки с ракетами конструкции М.К. Янгеля и две ШПУ с ракетами конструкции В.Н. Челомея, одна из которых являлась факультативной, поскольку не была рассчитана на повышенную стойкость.

Для имитации воздействия ударной сейсмической волны на заглубленную часть шахты в районе командного пункта на расстоянии порядка 400 метров от уровня земли было установлено подрывное ядерное устройство. Мощность его выбиралась из расчета воздействия на перечисленные объекты нагрузок, соответствующих эквиваленту ядерной бомбы, равному одной мегатонне.
Для имитации воздействия ударной волны на защитное устройство шахтной пусковой установки - крышу - в районе каждой из перечисленных шахтных пусковых установок были заложены в специальных шурфах диаметром около метра в непосредственной близости от шахты на расстоянии 12-15 метров заряды взрывчатого вещества. Для каждой ПУ предусматривалось по шесть зарядов.

Во избежание возможных непредвиденных последствий заправка топливных баков производилась не компонентами топлива, а спиртом и водой. Соотношение между ними выбиралось такое, чтобы сохранялись штатные инерционно-массовые характеристики объектов.

Комплексы перед испытаниями приводились в полную боевую готовность. Все параметры телеметрического контроля были выведены на систему измерений. В процессе испытаний фиксировалось давление по всей образующей стакана шахтной пусковой установки, давление на крышу, возникающие перегрузки, угловые скорости вращения стакана, напряженно-деформированное состояние элементов ШПУ и ракеты.

Одной из основных целей испытаний была проверка работы продольной и поперечной амортизации ракеты с контейнером, обеспечивающей не только невозможность соударения последнего со стенкой шахты, но и ограничивающей перегрузки до заданного уровня. Превышение продольных перегрузок могло привести к прорыву промежуточных днищ, соединению компонентов топлива и взрыву, а поперечных перегрузок - к потере азимута стрельбы.
При этом необходимо было учитывать, что взрывная волна, доходя до центра земли, возвращается обратно, и так в затухающем режиме могло происходить нагружение до шести раз.

И вот настал час "Х". В установленное строго засекреченное время был произведен одновременный подрыв ядерного устройства и взрывчатого вещества в шурфах.

Через 45 минут после взрыва по разрешению дозиметрического расчета произвели внешний осмотр испытуемых объектов. В результате детального изучения всех подвергшихся воздействию ударной волны шахтных пусковых установок комиссия констатировала, что ракета и ее штатная пусковая установка никаких изменений не претерпели. Другая янгелевская ракета была
развернута на 1-1,5 градуса относительно направления воздействия взрыва. Более серьезные замечания были по пусковой установке В.Н. Челомея.

Проанализировав возникшие отклонения, комиссия пришла к выводу о возможности проведения на всех ракетах так называемого "сухого пуска", предусматривавшего прохождение команд по штатной циклограмме вплоть до выдачи команды на запуск пороховых аккумуляторов давления.

В результате было установлено, что все ракеты способны выполнить боевую задачу.

Это было далеко не последнее "атомное" испытание шахтной пусковой установки, и все последующие при различных видах нагружения контейнер выдержал, продемонстрировав тем самым высокую защищенность комплекса.
К сожалению, для испытателей это были далеко не безобидные эксперименты. Впоследствии его участники были приравнены к ликвидаторам чернобыльской аварии.


Поделиться с друзьями:

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.02 с.