Глава 1 . Основы физикохимии нефти и нефтепродуктов — КиберПедия 

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Глава 1 . Основы физикохимии нефти и нефтепродуктов

2017-09-28 561
Глава 1 . Основы физикохимии нефти и нефтепродуктов 0.00 из 5.00 0 оценок
Заказать работу

Глава 1. ОСНОВЫ ФИЗИКОХИМИИ НЕФТИ И НЕФТЕПРОДУКТОВ

Краткие сведения о химическом составе нефти и ее фракций

Элементный и фракционный состав нефти

Нефть представляет собой подвижную маслянистую горючую жидкость легче воды от светло-коричневого до черного цвета со специфическим запахом.

С позиций химии нефть – сложная исключительно многокомпонентная взаиморастворимая смесь газообразных, жидких и твердых углеводородов различного химического строения с числом углеродных атомов до 100 и более с примесью гетероорганических соединений серы, азота, кислорода и некоторых металлов. По химическому составу нефти различных месторождений весьма разнообразны. Поэтому обсуждение можно вести лишь о составе, молекулярном строении и свойствах «среднестатистической» нефти. Менее всего колеблется элементный состав нефтей: 82,5…87 % углерода; 12,5…14,5 % водорода; 0,05…0,35, редко до 0,7 % кислорода; до 1,8 % азота и до 5,3, редко до 10 % серы. Кроме названных, в нефтях обнаружены в незначительных количествах очень многие элементы, в т. ч. металлы (Са, Mg, Fe, Al, Si, V, Ni, Na и др.).

Поскольку нефть и нефтепродукты представляют собой многокомпонентную непрерывную смесь углеводородов и гетероатомных соединений, то обычными методами перегонки не удается разделить их на индивидуальные соединения со строго определенными физическими константами, в частности температурой кипения при данном давлении. Принято разделять нефти и нефтепродукты путем перегонки на отдельные компоненты, каждый из которых является менее сложной смесью. Такие компоненты принято называть фракциями или дистиллятами. В условиях лабораторной или промышленной перегонки отдельные нефтяные фракции отгоняются при постепенно повышающейся температуре кипения. Следовательно, нефть и ее фракции характеризуются не температурой кипения, а температурными пределами начала кипения (н. к.) и конца кипения (к. к.).

При исследовании качества новых нефтей (т. е. составлении технического паспорта нефти) их фракционный состав определяют на стандартных перегонных аппаратах, снабженных ректификационными колонками (например, на АРН-2 по ГОСТ 11011–85). Это позволяет значительно улучшить четкость погоноразделения и построить по результатам фракционирования так называемую кривую истинных температур кипения (ИТК) в координатах температура – выход фракций в % мас., (или % об.).

Отбор фракций до 200 °С проводится при атмосферном давлении, а более высококипящих – под вакуумом во избежание термического разложения. По принятой методике от начала кипения до 300 °С отбирают 10-градусные, а затем 50-градусные фракции до температуры к. к. 475…550 °С.

Таким образом, фракционный состав нефтей (кривая ИТК) показывает потенциальное содержание в них отдельных нефтяных фракций, являющихся основой для получения товарных нефтепродуктов (автобензинов, реактивных и дизельных топлив, смазочных масел и др.). Для всех этих нефтепродуктов соответствующими ГОСТами нормируется определенный фракционный состав.

Нефти различных месторождений значительно различаются по фракционному составу, а следовательно, по потенциальному содержанию дистиллятов моторных топлив и смазочных масел. Большинство нефтей содержит 15…25 % бензиновых фракций, выкипающих до 180 °С, 45…55 % фракций, перегоняющихся до 300…350 °С.

Известны месторождения легких нефтей с высоким содержанием светлых (до 350 °С). Так, самотлорская нефть содержит 58 % светлых, а в нефти месторождения Серия (Индонезия) их содержание достигает 77 %. Газовые конденсаты Оренбургского и Карачаганакского месторождений почти полностью (85…90 %) состоят из светлых.

Добываются также очень тяжелые нефти, в основном состоящие из высококипящих фракций. Например, в нефти Ярегского месторождения (Республика Коми), добываемой шахтным способом, отсутствуют фракции, выкипающие до 180 °С, а выход светлых составляет всего 18,8 %.

Подробные данные о фракционном составе нефтей бывшего СССР имеются в четырехтомном справочнике «Нефти СССР».

Классификация нефтей

На начальном этапе развития нефтяной промышленности основным показателем качества нефти была плотность. Нефти делили на легкие (ρ15 < 0,828), утяжеленные (ρ15 = 0,828…0,884) и тяжелые (ρ15 > 0,884). В легких нефтях содержится больше бензиновых и керосиновых фракций и сравнительно мало серы и смол. Из этих нефтей можно вырабатывать смазочные масла высокого качества. Тяжелые нефти, напротив, характеризуются высоким содержанием смолисто-асфальтеновых веществ, гетероатомных соединений и потому мало пригодны для производства масел и дают относительно малый выход топливных фракций.

Предложено множество научных классификаций нефтей (химическая, генетическая, технологическая и др.), но до сих пор нет единой международной их классификации.

Химическая классификация

Горным бюро США предложен вариант химической классификации, в основу которого положена связь между плотностью и углеводородным составом легкой и тяжелой частей нефти.

Классификация, отражающая только химический состав нефти, предложена сотрудниками Грозненского нефтяного научно-исследовательского института (ГрозНИИ). За основу этой классификации принято преимущественное содержание в нефти одного или нескольких классов углеводородов. Различают 6 типов нефтей: парафиновые, парафино-нафтеновые, нафтеновые, парафино-нафтено-ароматические, нафтено-ароматические и ароматические.

В парафиновых нефтях (типа узеньской, жетыбайской) все фракции содержат значительное количество алканов: бензиновые не менее 50 %, а масляные – 20 % и более. Количество асфальтенов и смол исключительно мало.

В парафино-нафтеновых нефтях и их фракциях преобладают алканы и циклоалканы, содержание аренов и смолисто-асфальтеновых 34 веществ мало. К ним относится большинство нефтей Урало-Поволжья и Западной Сибири.

Для нафтеновых нефтей характерно высокое (до 60 % и более) содержание циклоалканов во всех фракциях. Они содержат минимальное количество твердых парафинов, смол и асфальтенов. К нафтеновым относятся нефти, добываемые в Баку (балаханская и сураханская) и на Эмбе (доссорская и макатская) и др.

В парафино-нафтено-ароматических нефтях содержатся примерно в равных количествах углеводороды всех трех классов, твердых парафинов не более 1,5 %. Количество смол и асфальтенов достигает 10 %.

Нафтено-ароматические нефти характеризуются преобладающим содержанием цикланов и аренов, особенно в тяжелых фракциях. Алканы содержатся в небольшом количестве только в легких фракциях. В состав этих нефтей входит около 15… 20 % смол и асфальтенов.

Ароматические нефти характеризуются преобладанием аренов во всех фракциях и высокой плотностью. К ним относятся прорвинская в Казахстане и бугурусланская в Татарстане.

Дизельные топлива

По частоте вращения коленчатого вала различают быстроходные (с числом оборотов коленчатого вала более 1000 мин–1) и тихоходные дизели. Степень быстроходности в значительной мере определяет требования к качеству топлива. Значительная часть грузовых автомобилей и сельскохозяйственной техники в настоящее время оснащены быстроходными дизелями, а суда речного и морского флота, а также стационарные силовые установки – преимущественно тихоходными.

По сравнению с бензиновыми дизельные двигатели имеют следующие преимущества:

– на 30…35 % меньше расходуют более дешевое топливо;

– средняя температура рабочего цикла в дизеле ниже, что облегчает его охлаждение; – применение в дизелях более тяжелого по сравнению с бензином топлива обеспечивает пожарную безопасность, облегчает его транспортирование и хранение;

– допускают большие перегрузки и отличаются большей устойчивостью в работе;

– выхлопные газы менее токсичны;

– за счет значительно меньшего времени контакта топлива с воздухом (топливо в дизеле впрыскивается только к концу такта сжатия) полностью устраняется опасность возникновения детонационного сгорания;

– практически неограниченная возможность обеднения горючей смеси, что позволяет изменять мощность дизеля только путем регулирования подачи топлива при постоянном расходе воздуха;

– возможность использования топлив с различной испаряемостью: среднедистиллятных, утяжеленных, а при определенных условиях и легких, типа бензина и керосина.

К недостаткам дизелей следует отнести их большую удельную массу, меньшую быстроходность и большую затрудненность запуска в зимних условиях. К наиболее важным показателям качества топлив для быстроходных дизелей относятся: воспламеняемость, испаряемость, вязкость, коррозионная активность, низкотемпературные и экологические свойства.

Воспламеняемость характеризует способность дизельного топлива к самовоспламенению в среде разогретого от адиабатического сжатия в цилиндре двигателя воздуха. Было установлено, что конструктивные и эксплуатационные факторы, которые способствуют повышению температуры и давления воздуха, быстрому и интенсивному перемешиванию его с топливом в цилиндре двигателя, улучшают воспламеняемость и тем самым процесс сгорания топлива и делают работу дизеля мягкой и экономичной.

Положительное влияние на работу дизеля оказывают:

– повышение степени сжатия;

– увеличение числа оборотов коленчатого вала;

– применение для изготовления блока цилиндров материала с низкой теплопроводностью, например чугуна;

– применение топлив с оптимальной воспламеняемостью.

Работу дизеля ухудшают повышение влажности воздуха и низкие температуры окружающего воздуха. Определение воспламеняемости дизельных топлив производится на специальной установке со стандартным одноцилиндровым двигателем ИТ9-3 и заключается в сравнении испытуемого топлива с эталонными топливами. Мерой воспламеняемости дизельных топлив принято считать цетановое число (ЦЧ). В качестве эталонных топлив применяют цетан (н -гексадекан С16Н34), имеющий малый период задержки самовоспламенения (ПЗВ), и его воспламеняемость принята за 100 единиц ЦЧ, и a-метилнафталин, имеющий большой ПЗВ, и его воспламеняемость принята за 0.

Цетановое число – показатель воспламеняемости дизельного топлива, численно равный процентному содержанию цетана в смеси с a-метилнафталином, которая по самовоспламеняемости в стандартном двигателе эквивалентна испытуемому топливу.

К дизельным топливам не предъявляются столь высокие требования по детонационной стойкости в сравнении с автобензинами. Товарные дизельные топлива должны иметь ЦЧ в определенных оптимальных пределах. Применение топлив с ЦЧ менее 40 приводит к жесткой работе дизеля и ухудшению пусковых свойств топлива. Повышение ЦЧ выше 50 также нецелесообразно, так как возрастает удельный расход топлива в результате уменьшения полноты сгорания.

Цетановое число дизельного топлива существенно зависит от его фракционного и химического состава. Алканы нормального строения и олефины имеют самые высокие ЦЧ, а ароматические углеводороды – наоборот, самые низкие ЦЧ. Цетановые числа высококипящих фракций нефти, как правило, выше ЦЧ низкокипящих. В ГОСТах многих стран мира, в т. ч. бывшего СССР, цетановые числа дизельных топлив нормируются в пределах 40…55. При необходимости повышения ЦЧ товарных дизельных топлив, на практике применяют специальные присадки, улучшающие воспламеняемость топлив, такие, как алкилнитраты (изопропил-, амил- или циклогексилнитраты и их смеси). Их добавляют к топливу не более 1 % мас., преимущественно к зимним и арктическим сортам, а также топливам низкоцетановым, получаемым, например, на базе газойлей каталитического крекинга. Кроме повышения ЦЧ (на 10…12 единиц), присадка позволяет улучшить пусковые характеристики при низкой температуре и уменьшить нагарообразование. Добавление 1,5…2 % мас. циклогексилнитрата, например, к этилированному автобензину позволяет использовать его как топливо для быстроходных дизелей.

Испаряемость дизельных топлив. Характер процесса сгорания дизельных топлив определяется кроме их воспламеняемости и полнотой испарения. Она зависит от температуры и турбулентности движения воздуха в цилиндре, качества распыливания и испаряемости топлива. С улучшением качества распыливания и повышением температуры нагрева воздуха скорость испарения впрыскиваемого топлива возрастает (однако степень распыливания не должна быть чрезмерно высокой, чтобы обеспечить необходимую дальнобойность струи). Время, которое отводится на испарение, в дизелях примерно в 10…15 раз меньше, чем в бензиновых двигателях, и составляет 0,6…2,0 мс. Тем не менее в дизелях используют более тяжелые топлива с худшей испаряемостью, поскольку испарение осуществляется при высокой температуре в конце такта сжатия воздуха.

Испаряемость дизельных топлив оценивается их фракционным составом. Если пусковые свойства автобензинов определялись tН.К. и t 10%, то для дизельных топлив они оцениваются t 50%. Чем ниже эта температура, тем легче запуск дизеля. Считается, что tН.К. дизельных топлив должна составить 180…200 °С, поскольку наличие бензиновых фракций ухудшает их воспламеняемость и тем самым пусковые свойства, а также повышает пожароопасность. Нормируемая температура t 96% в пределах 330…360 °С свидетельствует о присутствии в топливе высококипящих фракций, которые могут ухудшить смесеобразование и увеличить дымность отработавших газов.

Вязкость дизельных топлив. Топливо в системе питания дизельного двигателя выполняет одновременно и роль смазочного материала. При недостаточной вязкости топлива повышается износ плунжерных пар насоса высокого давления и игл форсунок, а также растет утечка топлива между плунжером и гильзой насоса. Топливо слишком вязкое будет плохо прокачиваться по системе питания, недостаточно тонко распыливаться и неполностью сгорать. Поэтому ограничивают как нижний, так и верхний допустимые пределы кинематической вязкости при 20 °С (в пределах от 1,5 до 6,0 сСт.).

Низкотемпературные свойства. В отличие от бензинов в состав дизельных топлив входят высокомолекулярные парафиновые углеводороды нормального строения, имеющие довольно высокие температуры плавления. При понижении температуры эти углеводороды выпадают из топлива в виде кристаллов различной формы, и топливо мутнеет. Возникает опасность забивки топливных фильтров кристаллами парафинов. Принято считать, что температура помутнения характеризует нижний температурный предел возможного применения дизельных топлив. При дальнейшем охлаждении помутневшего топлива кристаллы парафинов сращиваются между собой, образуют пространственную решетку, и топливо теряет текучесть. Температура застывания – величина условная и используется для ориентировочного определения возможных условий применения топлива. Этот показатель принят для маркировки дизельных топлив на следующие 3 марки:

летнее (tзаст менее –10 °С), зимнее (tзаст менее –35…45 °С) и арктическое (tзаст менее –55 °С).

Применимы для улучшения низкотемпературных свойств дизельных топлив следующие 3 способа:

1) адсорбционная (цеолитная) или карбамидная депарафинизация;

2) облегчение фракционного состава путем снижения температуры конца кипения топлива;

3) добавление к топливам депрессорных присадок, которые эффективно снижают их температуры застывания. В качестве депрессоров промышленное применение получили сополимеры этилена с винилацетатом. Поскольку они практически не влияют на температуру помутнения топлив, большинство исследователей считает, что депрессор, адсорбируясь на поверхности образующихся кристаллов парафинов, препятствует их агрегации с формированием объемного каркаса.

Коррозионная активность характеризует способность топлива вызывать коррозию деталей двигателя, топливной аппаратуры, топливопроводов, резервуаров и т. д. Она зависит, как и у бензинов, от содержания в топливе коррозионно-агрессивных кислородных и сероорганических соединений: нафтеновых кислот, серы, сероводорода и меркаптанов. Коррозионная активность дизельных топлив оценивается содержанием общей серы (менее 0,2 и 0,4…0,5 % мас. для I и II вида соответственно), меркаптановой серы (менее 0,01 % мас.), сероводорода (отсутствие), водорастворимых кислот и щелочей (отсутствие), а также кислотностью (менее 5 мг/КОН/460 мл) и испытанием на медной пластинке (выдерживает). Для борьбы с коррозионными износами деталей дизеля выпускают малосернистые топлива и добавляют к ним различные присадки (антикоррозионные, защитные, противоизносные и др.).

Экологические свойства. По сравнению с автобензинами, дизельные топлива характеризуются значительно меньшей пожароопасностью. Это достоинство является решающим при выборе типа двигателя для установки на том или ином виде техники. Например, из-за меньшей пожароопасности топлива дизели используют на судах речного и морского флота, комбайнах, подводных лодках, на танках, бронетранспортерах и т. д. Пожароопасность дизельных топлив оценивают по температуре вспышки в закрытом тигле. Для всех марок быстроходных дизельных 56 топлив она нормируется не ниже 30…35 °С. Для топлив, предназначенных к применению на кораблях, температура вспышки должна быть не ниже 61 °С, а в особо опасных условиях, например в подводных лодках, – не ниже 90 °С.

В зависимости от условий применения в соответствии с ГОСТ 305–82 установлены следующие марки топлив (табл. 1.8) для быстроходных дизелей:

Л – (летнее), З – (зимнее) А – (арктическое)

В стандарт введена следующая форма условного обозначения топлив: к марке Л добавляют цифры, соответствующие содержанию серы и температуре вспышки, например, Л-0,2-40; к марке З – содержание серы и температуры застывания, например, З-0,2 минус 35. В условное обозначение марки топлива А входит только содержание серы, например, А-0,4.

По техническим условиям выпускаются дизельные топлива: – экспортные ДЛЭ, ДЗЭ; – с депрессорными присадками ДЗП, ДАП; – экологически чистые и с улучшенными экологическими свойствами (с содержанием серы 0,01 и 0,005 %) ДЭК-Л, ДЭК-З, ДЛЭЧ, ДЗЭЧ и др. В западно-европейских странах и США начато производство экологичных дизельных топлив со сверхнизким содержанием серы (менее 0,05%).

Топлива для тихоходных дизелей. Дизели с небольшой частотой вращения коленчатого вала (менее 1000 об/мин) наиболее широко используют в стационарных установках, что позволяет предварительно провести подогрев, отстой и фильтрацию топлива, тем самым снижает требования к его эксплуатационным свойствам. Вязкость топлива для тихоходных дизелей значительно выше, чем для быстроходных, поэтому ее нормируют при 50 °С. Тихоходные дизели обычно работают в закрытых помещениях, поэтому топливо должно иметь более высокую температуру вспышки.

Для тихоходных дизелей выпускается 2 марки топлива: ДТ и ДМ (табл. 1.9).

Марка ДТ представляет собой смесь дистиллятных и остаточных продуктов. Его используют в среднеоборотных и малооборотных дизелях, не оборудованных средствами предварительной подготовки топлива.

Марка ДМ (мазут) рекомендуется для тихоходных судовых дизелей, установленных в помещениях, оборудованных системой подготовки топлива.

Реактивные топлива

В современной гражданской и военной авиации широкое применение получили воздушно-реактивные двигатели (ВРД), работающие на жидком углеводородном топливе. Это обусловлено достаточно широкими ресурсами нефтяных углеводородных топлив, их сравнительно невысокой стоимостью, высокими энергетическими показателями и рядом других достоинств. Применение ВРД, являющегося одновременно движителем самолета без сложных механических передаточных и ходовых устройств, позволяет при относительно небольшой массе создать большую тягу, причем в отличие от поршневых двигателей с пропеллером сила тяги ВРД не только не снижается с увеличением высоты и скорости полета, наоборот, даже возрастает. Совершенствование ВРД и реактивных самолетов всегда было направлено на дальнейшее увеличение высоты и скоростей полета, повышение моторесурса, надежности и экономичности двигателей, обеспечение безопасности полетов. В зависимости от развиваемых скорости и высоты полета принято классифицировать ВРД и соответственно топлива на два типа: для дозвуковых и сверхзвуковых реактивных самолетов.

Среди моторных топлив повышенные требования предъявляются к качеству реактивных – технологию как при производстве, так и транспортировке, хранении и применении подвергают более тщательному контролю. К топливу для ВРД предъявляются следующие основные требования:

– оно должно полностью испаряться, легко воспламеняться и быстро сгорать в двигателе без срыва и проскока пламени, не образуя паровых пробок в системе питания, нагара и других отложений в двигателе;

– объемная теплота сгорания его должна быть возможно высокой;

– оно должно легко прокачиваться по системе питания при любой и экстремальной температуре его эксплуатации;

– топливо и продукты его сгорания не должны вызывать коррозии деталей двигателя;

– оно должно быть стабильным и менее пожароопасным при хранении и применении.

Испаряемость – одно из важнейших эксплуатационных свойств реактивных топлив. Она характеризует скорость образования горючей смеси топлива и воздуха и тем самым влияет на полноту и стабильность сгорания и связанные с этим особенности работы ВРД: легкость запуска, нагарообразование, дымление, теплонапряженность камеры сгорания, а также надежность работы топливной системы.

Испаряемость реактивных топлив, как и автобензинов, оценивают фракционным составом и давлением насыщенных паров. Для реактивных топлив нормируются температура начала кипения, 10-, 50-, 90и 98%-го выкипания фракции. Температура конца кипения (точнее, 98 % перегонки) регламентируется требованиями прежде всего к низкотемпературным свойствам, а начала кипения – пожарной опасностью и требованием к упругости паров. Естественно, у реактивных топлив для сверхзвуковых самолетов температура начала кипения существенно выше, чем для дозвуковых.

В ВРД нашли применение 3 типа различающихся по фракционному составу топлив.

Первый тип реактивных топлив, который наиболее распространен, – это керосины с пределами выкипания 135…150 и 250…280 °С (отечественные топлива Т-1, ТС-1 и РТ, зарубежное – JR-5).

Второй тип – топливо широкого фракционного состава (60…280 °С), являющееся смесью бензиновой и керосиновой фракций (отечественное топливо Т-2, зарубежное – JR-4).

Третий тип – реактивное топливо для сверхзвуковых самолетов: утяжеленная керосино-газойлевая фракция с пределами выкипания 195…315 °С (отечественные топлива Т-6, Т-8В и зарубежное JR-6).

Давление насыщенных паров реактивного топлива обусловливает потери топлива и избыточное давление в баках, необходимое для обеспечения бескавитационной работы топливных насосов. Оно определяется в приборе типа бомбы Рейда при температуре 38 °С для топлива Т-2 и при 150 °С для топлив, не содержащих бензиновой фракции.

Горючесть является весьма важным эксплуатационным свойством реактивных топлив. Она оценивается следующими показателями: удельной теплотой сгорания, плотностью, высотой некоптящего пламени, люминометрическим числом и содержанием ароматических углеводородов (общим и отдельно бициклическим).

Удельная массовая теплота сгорания реактивного топлива колеблется в небольших пределах (10 250…10 300 ккал/кг), а удельная объемная – более существенно в зависимости от плотности топлива (которая изменяется в пределах от 755 для Т-2 до 840 кг/м3 для Т-6).

Плотность топлива – весьма важный показатель, определяющий дальность полета, поэтому предпринимаются попытки получения топлив с максимально высокой плотностью.

Высота некоптящего пламени – косвенный показатель склонности топлива к нагарообразованию. Она зависит от содержания ароматических углеводородов и фракционного состава.

Люминометрическое число характеризует интенсивность теплового излучения пламени при сгорании топлива, т. е. радиацию пламени, является также косвенным показателем склонности топлива к нагарообразованию. Оно определяется путем сравнения с яркостью пламени эталонных топлив – тетралина и изооктана.

Склонность топлива к нагарообразованию в сильной степени зависит от содержания ароматических углеводородов.

Воспламеняемость реактивных топлив обычно характеризуется концентрационными и температурными пределами воспламенения, самовоспламенения и температурой вспышки в закрытом тигле и др.

Прокачиваемость реактивных топлив оценивают следующими показателями: кинематической вязкостью, температурой начала кристаллизации, содержанием мыл нафтеновых кислот и содержанием воды и механических примесей.

Кинематическая вязкость топлив нормируется при двух температурах: при 20 и при 40 °С.

Температура начала кристаллизации для всех отечественных реактивных топлив нормируется не выше минус 60 °С.

Химическая стабильность реактивных топлив. Поскольку топлива для ВРД готовят преимущественно из дистиллятных прямогонных 61 фракций, они практически не содержат алкенов, имеют низкие иодные числа (не выше 3,5 г I2/100 мл) и характеризуются достаточно высокой химической стабильностью. В условиях хранения окислительные процессы в таких топливах идут очень медленно. Гидроочищенные реактивные топлива, хотя в них удалены гетеросоединения, тем не менее легче окисляются кислородом воздуха ввиду удаления природных антиокислителей и образуют смолоподобные продукты нейтрального и кислотного характера. Для повышения химической стабильности гидроочищенных топлив добавляют антиокислительные присадки (типа ионола). Химическая стабильность реактивных топлив оценивается по иодным числам и содержанию фактических смол.

Термоокислительная стабильность характеризует склонность реактивных топлив к окислению при повышенных температурах с образованием осадков и смолистых отложений. В условиях авиационных полетов имеет место повышение температуры топлива в топливных системах вплоть до 200 °С и выше, например, в сверхзвуковых самолетах. Окисление топлив при повышенных температурах значительно ускоряется за счет каталитического действия материала деталей топливных систем. Для снижения интенсивности окислительных процессов наиболее эффективно введение в реактивное топливо присадок, пассивирующих каталитическое действие металлов. Оценку термоокислительной стабильности реактивных топлив проводят в специальных приборах в статических и динамических условиях. Статический метод оценки заключается в окислении образца топлива при 150 °С в изолированном объеме с последующим определением массы образовавшегося осадка (в мг/100 мл) в течение 4 или 5 ч. Стабильность в динамических условиях оценивают по величине перепада давления в фильтре при прокачке нагретого до 150…180 °С топлива в течение 5 ч или по образованию осадков в нагревателе (в баллах). Повышение термоокислительной стабильности реактивных топлив обеспечивают технологическими методами (гидроочисткой) и введением специальных присадок (антиокислительных, диспергирующих или полифункциональных).

Коррозионная активность реактивных топлив. Она оценивается, как и для топлив поршневых ДВС, следующими показателями: содержанием общей серы, в т. ч. сероводорода и меркаптановой серы, содержанием водорастворимых кислот и щелочей, кислотностью и испытанием на медной пластинке. Топлива должны выдерживать испытание на медной пластинке (при 100 °С в течение 3 ч), а также в них должны отсутствовать сероводород, водорастворимые кислоты и щелочи.

Марки реактивных топлив. Отечественными стандартами предусматривается возможность производства реактивных топлив четырех марок для дозвуковой авиации (Т-1, ТС-1, Т-2 и РТ) и две марки для сверхзвуковых самолетов – Т-6 (табл. 1.10).

Топливо Т-1 – это прямогонная керосиновая фракция (150…280°С) малосернистых нефтей. Выпускают его в очень малых количествах.

Т-2 – топливо широкого фракционного состава (60…280 °С) – признано резервным и в настоящее время не вырабатывается.

Наиболее массовыми топливами для дозвуковой авиации являются ТС-1 и РТ.

Топливо ТС-1 – прямогонная фракция 150…250 °С сернистых нефтей. Отличается от Т-1 более легким фракционным составом.

Топливо РТ разработано взамен Т-1 и ТС-1. В процессе его производства прямогонные дистилляты (135…280 °С) подвергают гидроочистке. Для улучшения эксплуатационных свойств в топливо РТ вводятся присадки противоизносные марки П (0,002…0,004 % мас.), антиокислительная (ионол 0,003…0,004 % мас.), антистатические и антиводокристаллизирующие типа тетрагидрофурфуролового спирта (ТГФ).

 

Реактивное топливо для сверхзвуковой авиации Т-6 представляет собой глубокогидроочищенную утяжеленную керосино-газойлевую фракцию (195…315 °С) прямой перегонки нефти. У топлива низкое содержание серы, смол, ароматических углеводородов (до 10 % мас., а фактическое – 3…7 % мас.), высокая термическая стабильность, хорошо прокачивается, малокоррозийно и используется на самолетах, имеющих скорости полета до 3,5 М. Топливо для сверхзвуковой авиации Т-8В представляет собой гидроочищенную керосиновую фракцию 165…180 °С сернистых нефтей. Отечественные реактивные топлива по качеству не уступают зарубежным маркам топлив, например ДЖЕТА (А-1) и УР-5, а по некоторым показателям превосходят их.

Газотурбинные топлива

Газотурбинные двигатели (ГТД) обладают рядом преимуществ перед поршневыми: малые габариты и меньшая масса на единицу мощности, быстрый запуск и простота управления, малая потребность в охлаждающей воде, высокая надежность, возможность работать на дешевых нефтяных топливах, а также на топливах любого вида (газообразном, жидком и даже пылевидном твердом). Эти достоинства ГТД обусловили достаточно широкое их использование в различных отраслях народного хозяйства, преимущественно в энергетике (на стационарных и передвижных электрических, газо- и нефтеперекачивающих станциях) и некоторых видах транспорта (речных и морских судах, железнодорожных локомотивах). Главный недостаток ГТД – сравнительно низкий КПД: 24…27 % против 40 % у дизеля. КПД стационарных ГТД можно повысить, если использовать отработавшие их газы для отопления или горячего водоснабжения. Газотурбинные установки, как правило, работают на жидком углеводородном топливе утяжеленного фракционного состава, полученном при различных процессах переработки нефти. Применение таких дешевых топлив позволяет снизить стоимость энергии, получаемой на ГТД, даже при повышенном расходе топлива. К газотурбинным топливам предъявляются значительно менее жесткие требования к качеству по сравнению с реактивными топливами. Наиболее важное эксплуатационное требование к их качеству – низкое содержание в них ванадия, натрия и калия, вызывающих коррозию камер и лопаток газовых турбин. Исследованиями было установлено, что топлива с низким содержанием коррозионно-активных металлов получаются на базе дистиллятных фракций прямой перегонки глубокообессоленной нефти, термического и каталитического крекинга и коксования с температурой конца кипения до 480 °С.

В нашей стране выпускается 2 марки газотурбинных топлив: А – для пиковых газотурбинных установок и Б – для судовых и энергетических установок (табл. 1.11). Фракционный состав для газотурбинных установок не нормируется, однако он косвенно регулируется требованием по вязкости и плотности. Условная вязкость при 50 °С для топлива марки А нормируется не более 1,6 °ВУ, а для Б – 3 °ВУ. Плотность при 20 °С должна быть не более 935 кг/м3. Содержание серы допускается до 2,5 и 1,8 % для марок Б и А соответственно. Зольность для всех марок должна быть ниже 0,01 %. Содержание ванадия нормируется не более 0,04 и 0,005 % мас. для марок соответственно Б и А. Для этих марок регламентируется температура вспышки не ниже 65 °С и температура застывания не выше 5 °С.

Удовлетворение требований по зольности и содержанию ванадия, калия и натрия достигается обычно обессоливанием исходной нефти и водной промывкой топлив. Эффективным средством борьбы с ванадиевой коррозией является и введение присадок на основе солей меди, цинка, магния, кобальта и т. д. Практическое применение получили присадки, содержащие магниевые соли синтетических жирных кислот 66 С19–С20 и окисленного петролатума. Они снижают интенсивность ванадиевой коррозии в 4…10 раз за счет перевода низкоплавкого оксида ванадия в высокоплавкий ванадат магния Mg3(VO4)2.

Котельные топлива

В нашей стране котельные топлива являются наиболее массовым нефтепродуктом. Однако в связи с интенсивной газификацией котельных установок или переводом их на твердые виды топлива производство котельных топлив будет непрерывно сокращаться. Паротурбинные установки эксплуатируются в различных областях техники, на электростанциях, морских и речных судах, в железнодорожном транспорте, в насосных и т. д. Топлива для топок судовых и стационарных котельных установок, а также для промышленных печей (мартеновских и других) получают смешением тяжелых фракций и нефтяных остатков, а также остатков переработки углей и сланцев.

Наиболее широко применяют котельные топлива нефтяного происхождения. Качество котельных топлив нормируется следующими показателями: вязкость – показатель, позволяющий определить мероприятия, которые требуются для обеспечения слива, транспортировки и режима подачи топлива в топочное пространство. От условий распыливания топлива зависит полнота испарения и сгорания топлива, КПД котла и расход горючего. Величина вязкости топлива оценивается в зависимости от его марки при 50 и 80 °С в °ВУ.

Температура вспышки определяет условия обращения с топливом при производстве, транспортировке, хранении и применении. Не рекомендуется разогревать топочные мазуты в открытых хранилищах до температуры вспышки. Основную массу котельных топлив производят на основе остатков сернистых и высокосернистых нефтей. При сжигании сернистых топлив образуются окислы серы, которые вызывают интенсивную коррозию металлических поверхностей труб, деталей котлов и, что недопустимо, загрязняют окружающую среду. Для использования в технологических котельных установках, таких как мартеновские печи, печи трубопрокатных и сталепрокатных станов и т. д., не допускается применение высокосернистых котельных топлив.

В нашей стране выпускаются следующие марки котельных топлив (см. табл. 1.11):

1) флотские мазуты марок Ф-5 и Ф-12. Ф-5 получают смешением мазута и гудрона сернистых нефтей с дистиллятными фракциями прямой перегонки и вторичных процессов. Содержание серы в них допускается до 2 %. Ф-12 представляет собой смесь дистиллятных и остаточных продуктов переработки малосернистых нефтей. Содержание серы в нем допускается до 0,6 %. Флотские мазуты Ф-5 и Ф-12 различаются между собой по вязкости. Вязкость условная при 50 °С для этих марок нормируется соответственно не более 5 и 12 °ВУ;

2) топочные мазуты 40 и 10 – являются наиболее массовыми котельными топливами. Они предназначаются для всех котельных и нагревательных установок общего назначения. По содержанию серы выпускают топлива: малосернистые – от 0,5 до 1,0 %, сернистые – от 1,0 до 2 % и высокосернистые – до 3,5 %;

3) топливо для мартеновских печей. Вырабатывают две марки: МП – малосернистое (до 0,5 %) и МПС – сернистое (до 1,5 %).

Отечественные котельные топлива, хотя по качеству примерно соответствуют зарубежным аналогам, однако недостаточно полно удовлетворяют потребностям по целому ряду показателей: содержанию серы и механических примесей, зольности и температуре застывания высокопараф


Поделиться с друзьями:

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.099 с.