Тема 1.3.3 Принцип передачи информации по оптическим волокнам — КиберПедия 

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Тема 1.3.3 Принцип передачи информации по оптическим волокнам

2017-09-10 637
Тема 1.3.3 Принцип передачи информации по оптическим волокнам 0.00 из 5.00 0 оценок
Заказать работу

 

В основе функционирования оптических волоконных сетей лежит принцип распространения световых волн по оптическим световодам на большие расстояния. При этом электрические сигналы, несущие информацию, преобразуются в световые импульсы, которые с минимальными искажениями передаются по волоконно-оптическим линиям связи (ВОЛС). Большое распространение подобные системы получили благодаря целому ряду достоинств, которые есть у ВОЛС по сравнению с системами передачи, использующими медные кабели или радиоэфир в качестве среды передачи.

Такая полоса дает возможность передавать потоки информации в несколько терабит в секунду. Важными преимуществами ВОЛС являются такие факторы, как малое затухание сигналов, позволяющее, при использовании современных технологий, строить участки оптических систем в сто и более километров без ретрансляции, высокая помехозащищенность, связанная с малой восприимчивостью оптического волокна к электромагнитным помехам, и многие другие.

Оптические волокна - один из основных компонентов ВОЛС. Они представляют собой комбинацию материалов, имеющих различные оптические и механические свойства. Внешняя часть волокна изготавливается обычно из пластмасс или эпоксидных композиций, сочетающих высокую механическую прочность и большой коэффициент преломления света. Этот слой обеспечивает механическую защиту световода и его устойчивость к воздействию внешних источников оптического излучения.

Основная часть стекловолокна состоит из сердцевины и оболочки. Материалом сердцевине служит сверхчистое кварцевое стекло, которое и является основной средой передачи оптических сигналов. Удержание светового импульса происходит вследствие того, что коэффициент преломления материала сердцевины больше чем у оболочки. Таким образом, при оптимально подобранном соотношении коэффициентов преломления материалов происходит полное отражение светового луча внутрь сердцевины. Более подробно конструкции волокон различных типов и их основные конструктивные характеристики показаны ниже.

Для передачи свет (точнее, инфракрасное излучение) вводится под небольшим углом в торец оптического волокна. Максимальный угол проникновения светового импульса в сердечник волокна a0 называется угловой апертурой оптического волокна. Синус угловой апертуры называется числовой апертурой NA и рассчитывается по формуле:

NA= sina0 = vn12 – n22

Из приведенной формулы следует, что числовая апертура световода NA зависит только от показателей преломления сердцевины и оболочки - n1 и n2. При этом всегда выполняется условие: n1 > n2 (рисунок 80).

Рисунок 80- Распространение света в оптическом волокне

 

Если угол падения света a больше, чем a0, то луч света полностью преломляется и не попадает в сердечник оптического волокна. Если угол a меньше чем a0, то происходит отражение от границы материалов сердечника и оболочки, и световой луч распространяется внутри сердечника (рисунок 81).

Рисунок 81-Условия распространения света в оптическом волокне

 

Скорость распространения света в оптическом волокне зависит от коэффициента преломления сердечника волокна и определяется как:

V = c/n

где с– скорость света в вакууме, n - коэффициент преломления сердечника.

Типичные значения коэффициента преломления материала сердечника лежат в пределах от 1,45 до 1,55.

Для того чтобы передавать сигналы по оптическим волноводам, необходимо иметь источник строго когерентного света. Для увеличения дальности передачи ширина спектра передатчика должна быть как можно меньше. Для этой цели наиболее подходят лазеры, которые, благодаря индуцированному излучению света, позволяют поддерживать постоянную разность фаз при одинаковой длине волн, В связи с тем, что диаметр сердцевины волокна сравним с длиной волны оптического излучения, в световоде возникает явление интерференции. Это может быть доказано тем, что свет распространяется в стекле сердцевины только под определенными углами, а именно в направлениях, в которых введенные световые волны при их наложении усиливаются. Говорят, что возникает конструктивная интерференция. Разрешенные световые волны, которые могут распространяться в оптическом волокне, называются модами(собственными волнами). Для описания процессов распространения света в оптических волокнах существуют несколько параметров, которые необходимо учитывать.

 


Поделиться с друзьями:

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.01 с.