О потоках рентгеновских лучей — КиберПедия 

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

О потоках рентгеновских лучей

2017-08-26 251
О потоках рентгеновских лучей 0.00 из 5.00 0 оценок
Заказать работу

 

Нижеследующие строки, возможно, содержат полезную информацию для физиков и врачей. Те, кто по долгу службы применяет открытия Рентгена для помощи страдающим, определяя местонахождение инородных тел в организме или выясняя состояние локальных расстройств и врожденных пороков, во многих случаях склонны к разочарованию. Если определение положения инородного тела в голове, шее и во всех мягких тканях и обнаружение запущенной болезни в легких не представляют абсолютно никакой трудности, то поиск местонахождения такого крупного и непрозрачного тела, как пуля, внедрившаяся в некоторые костные части торса больного, часто может сопровождаться осложнениями. Процесс будет неизменно успешным, если строго соблюдать рекомендации, которые являются результатом исследования множества случаев такого рода.

Для придания настоящим утверждениям законченности и большей практичности я считаю полезным сказать несколько слов о рентгеновских лучах. На основании всех полученных мной до сих пор данных придерживаюсь мнения, которое высказывал по другим поводам: эти излучения образуются потоками некой материи, отбрасываемой с огромной скоростью и, как правило, в режиме пульсации от стенок трубки. Пульсирующий характер обусловлен лишь особенностью работы аппарата, обычно применяемого для генерирования лучей; однако колебательный, или пульсирующий, разряд не является обязательным условием, поскольку я получил однонаправленные токи высокого напряжения, тоже способные генерировать мощные лучи, так что применение электростатической машины будет столь же результативным. Способ образования этих лучей, или потоков, не имеет большого значения для решения задачи, о которой идет речь. Мелкие частицы внутри колбы, являющиеся первопричиной, могут быть ионами, что образовались в процессе электролиза, или более крупными частицами электрода, или, возможно, молекулами остаточного газа. Во всяком случае, есть основания считать, что частицы чрезвычайно малы, и вследствие этого скорости катодных потоков внутри трубки столь высоки, а столкновения столь интенсивны, что эти процессы вызывают дальнейшее расщепление катодной материи — явление, еще не изученное физиками. Я уже выдвигал в качестве вероятного предположение, что мы имеем дело с фактическим расщеплением эфирных вихрей, из которых, согласно теории лорда Кельвина, состоят материальные частицы, или, возможно, сталкиваемся с разложением материи до некой неизвестной первичной материи, называемой в древних ведах Акаша. Эксперименты доказывают, что эта субстанция отражается иногда очень интенсивно, иногда слабо, но во всех случаях разные металлы ведут себя необычно — исследованием этого я и занимался. И полученные результаты, хотя и не лишенные погрешностей из-за больших трудностей в получении точных данных в такого рода исследованиях, были тем не менее достаточно позитивными, чтобы убедить меня в том, что в потоках излучений Рентгена присутствует среда, или стихия, элементы которой имеют отношение к образованию электродвижущей силы между металлами, находящимися в контакте. Возможно, в свете передовых представлений о контактной электризации следовало сказать, что эти потоки образуются из эфира, но я предпочел употребить термин «первичная материя», поскольку, хотя для ученого ума слово «эфир» выражает совершенно определенное понятие, не существует ясности относительно структуры этой среды. Излучаемая материя не обнаруживается с помощью спектрального анализа и, очевидно, не производит какого-либо поддающегося оценке механического или даже теплового эффекта, не реагирует и на электромагнит; все эти аргументы указывают на то, что она не может состоять из молекул какого-либо известного вещества. Излучения производят мощное воздействие на фотографическую пластину или флюоресцирующий экран, но я рассматриваю эти явления в качестве очевидных последствий энергетического взаимодействия.

Из различных приемлемых версий относительно образования этих потоков вне трубки наиболее обоснованной, по моему мнению, является предположение, что должен происходить выброс расщепленного катодного вещества сквозь стенки колбы. Доказано, что внутри колбы присутствуют частицы достаточно малой величины, и любая скорость, вплоть до многих тысяч километров в секунду, не только возможна, но и вероятна, и даже если бы частицы не расщеплялись при ударе о стенки или другое сравнительно непрозрачное тело внутри колбы, они, несомненно, проходили бы сквозь значительные слои большинства веществ. Мои опыты в этой области доказали, что весь процесс расщепления практически происходит при первом столкновении с непроницаемым в различной степени препятствием внутри колбы, при этом вторичное столкновение, по-видимому, почти не дает эффекта, что можно объяснить, исходя из общепринятых принципов механики. Я также обнаружил, что место первого и самого сильного взаимодействия, будь то анод, катод или стенка колбы, неизменно является основным источником излучений, или потоков. К тому же в полном соответствии с принципами механики проникающая способность тем больше, чем полнее расщепление. Так, например, прохождение лучей сквозь непрозрачные предметы значительной толщины приводит, по-видимому, к дальнейшему расщеплению частиц, и лучи гораздо легче пронизывают плотные вещества. Тот же эффект был получен в исследованиях профессора Райта, который первым в Соединённых Штатах опубликовал достоверные результаты. Я прихожу к заключению, что толстостенные трубки обеспечивают излучения с большей проникающей силой. Конечно, это не следует понимать так, что имею в виду большую силу удара. В основном именно упомянутое выше обстоятельство делает более вероятным предположение, что выбрасываемая материя не есть однородный поток, но состоящий из частиц разнообразной величины, движущихся с различными скоростями, так как, будь все частицы одинаковы, проникающая способность зависела бы главным образом от скорости. Следовательно, для практического применения рентгеновских потоков представляется очень важным найти способ их фильтрации и превращения в однородные, поскольку, только применяя этот метод, мы можем рассчитывать на получение точных результатов в их исследовании. Потоки с идеально равномерной скоростью и одинаковыми свойствами, если только получить их, были бы более пригодны для научных исследований.

Поскольку разрушение электродов, особенно алюминиевых, происходит так медленно, что никакого существенного уменьшения веса не выявляется даже после длительного использования, отсюда следует, что материя, образующая рентгеновские потоки, до такой степени тонка, что ее не удается обнаружить. Несколько трубок, которые я использовал в течение ряда месяцев, продемонстрировали, что бомбардируемое место на стекле было полностью пропитано частицами алюминиевого электрода, однако потребовались бы, вероятно, годы непрерывной эксплуатации, чтобы собрать какое-либо поддающееся оценке количество материи снаружи трубки. В этой связи, относительно трубки с алюминиевым электродом, выявляется заслуживающий внимания факт, что при правильной настройке качество электрода не ухудшается, а, напротив, по всей видимости, улучшается; тогда как применение платинового электрода укорачивает срок службы трубки вследствие того, что вещество электрода осаждается на стенках, и этот налет, как я уже объяснял в связи с другим вопросом, затрудняет выход потока. То есть как только частицы наталкиваются на пленку из вещества электрода, они сообщают ей свой заряд, и это вызывает отталкивание поступающих частиц. В результате заметно возрастает сопротивление трубки. Вышеупомянутый недостаток платинового электрода, несмотря на его эффективность, заставляет отказаться от него.

Высказывалось предположение, что рентгеновские лучи обусловлены простым распространением электростатического напряжения, но, исходя из этой посылки, трудно представить себе, как могут генерироваться лучи в тех случаях, когда стеклянная стенка нагревается до высокой температуры и, как следствие, обретает проводимость, или когда экранная пластина, или барьер, изготовлена из металла и заземлена. Недавно Стоукс рассматривал вероятность того, что воздействие катодного потока на одну сторону барьера может вызвать молекулярное движение без обязательного пролета частиц сквозь перегородку. Согласно этому суждению, которое я не так давно изучал, дело представляется таким образом, что потоки материи могут возникать на внешней стороне стенки трубки, и в таком случае только воздух несет всю ответственность за последствия, и этим в какой-то степени объяснится тщетность исследования методом спектрального анализа. Но разве нельзя с большей вероятностью предположить реальность прохождения и дробления материи, как на это указывают все факты? Учитывая мнение профессора Стоукса, который предполагает, что возмущение носит непериодический характер и тем не менее способно вызывать явления, свойственные поперечным колебаниям чрезвычайно высокой частоты, для меня это выглядит вопросом серьезного выбора. Отнюдь не старые ньютоновы выводы о природе света следует пересматривать, а, скорее, беспочвенное умозаключение, что неизвестные ранее явления, открытые Рентгеном, обусловлены поперечными колебаниями, и это при экспериментальной недоказанности данного и при отсутствии приемлемого объяснения, как катодный удар может вызвать волны более высокой частоты, чем частота света.

Будучи твердо убежден в существовании материальных потоков, считаю, что неудача попыток продемонстрировать фактическое прохождение материи объясняется или незначительностью количества, или же структурой материи, но первое предпочтительнее, поскольку на это указывают все характерные особенности потоков. По моему мнению, исследователям не стоит отказываться от проведения экспериментов с применением рентгеновских лучей, опасаясь их пагубного действия, поскольку есть все основания считать, что потребуются столетия, чтобы аккумулировать достаточное количество такого вещества, способного причинить вред жизнедеятельности человека. Моя же цель — доказать исключительно качественную природу их действий. Например, рискуя поощрить шарлатанов, до которых, возможно, дойдет мое утверждение, хотел бы сказать, что абсолютно уверен в получении доказательства их бактерицидного действия. Кроме следствий физиологического характера, на которые уже обращалось внимание читателя, совсем недавно, работая с мощными трубками, я отметил появление болезненного ощущения в области лба выше линии глаз сразу после подключения к току. Это ощущение весьма сходно с тем, которое испытывает человек, когда выходит из темной комнаты на ослепительно яркий солнечный свет или какое-то время идет по полю, покрытому свежевыпавшим снегом.

Что касается пагубных воздействий на кожу, о чем по-разному пишут в отчетах, обращаю внимание на ошибочное истолкование этих проявлений. Они известны мне с некоторых пор, но неотложные дела не давали возможности подробно остановиться на этом предмете. Дело здесь не в рентгеновских лучах, а единственно в озоне, который порождается при соприкосновении с кожей. Азотистая кислота также может в незначительной степени оказывать влияние. Образовавшийся в большом количестве озон поражает кожу, наиболее энергично воздействуя на многие органические субстанции и полностью их разрушая, при этом эффект, несомненно, усиливается из-за повышения температуры и влажности кожи. Например, после облучения в течение некоторого времени кисти руки кожа теряет эластичность, что вызывает стянутость и боль и как следствие — воспаление и образование волдырей. Обычно это случается только на близком расстоянии от лампы, но может проявиться и на большем расстоянии при облучении лампой с одним электродом или, главным образом, лампой с высокой степенью разрежения, в которой электроды действуют автономно. Поэтому я всегда принимаю меры предосторожности, когда делаю снимки под рентгеновскими лучами, закрывая человека ширмой из алюминиевых проводов, которая должна быть заземлена — и желательно через конденсатор. Однако радикальным средством предотвращения воздействий такого рода является исключение доступа воздуха к коже во время экспозиции, например, путем погружения в масло. Так как во многих случаях это может оказаться неудобным, в целях защиты можно прибегнуть к металлической ширме. Действие озона на некоторые вещества, помещенные вблизи лампы таким образом, что на их поверхности порождается этот газ, столь сильно, что они разрушаются за несколько минут. Для провода, имеющего толстую резиновую изоляцию и подсоединенного к зажиму высокочастотной катушки, иногда достаточно облучения в течение лишь одной минуты, чтобы резиновая изоляция пришла в полную негодность. Некоторые изоляционные составы, выпускаемые промышленностью, разрушаются еще быстрее, но не собираюсь перечислять их, поскольку это может нанести ущерб их производителям. Гуттаперча, пчелиный воск и парафин успешно противостоят агрессивному воздействию, и для высокочастотных катушек следует использовать провода с такой изоляцией. Я впервые наблюдал такое мощное действие озона около двух лет тому назад в ходе эксперимента, который проводил в моей лаборатории в присутствии многих людей. Опыт заключался в том, что человек, стоявший на изолированном стенде, получал заряд с потенциалом около полутора миллионов вольт и с частотой несколько сотен тысяч чередований в секунду. В таких условиях светящиеся потоки вспыхивают на всех частях тела, особенно сильно на конечностях, волосах, на носу и ушах. Я много раз подвергал себя этому испытанию, которое, казалось, не предвещало иного риска, за исключением возможного разрыва кровеносного сосуда при условии очень большой сухости кожи и ее непроводимости. Тогда-то и отметил на себе и других последствия, выявившиеся позднее, которые во многом напоминают те, что считаются характерными при воздействии рентгеновских лучей. С токами, полученными с помощью усовершенствованных осцилляторов (их описание представлено в «Electrical Review» от 30 сентября 1896 года), озон образуется в таком изобилии, что достаточно включить ток лишь на несколько секунд, чтобы сильно озонировать атмосферу большого зала. Данные токи способны создавать химические соединения, важнейшее из которых — соединение атмосферного азота с кислородом. Это открывает беспредельные возможности, к достижению которых я всеми силами стремился в течение долгого времени, а именно: получение азотных соединений из атмосферы в промышленном масштабе фактически без иных материальных затрат, кроме механической энергии. Если производить этим способом только удобрения для почвы, польза для человечества была бы неизмеримой. Из упомянутого выше действия озона следует, что экспериментатор должен воспользоваться указанными мерами предосторожности, поскольку если в малых количествах озон является дезинфицирующим средством, то генерированный в больших количествах, он небезопасен.

Выполняя неприятную обязанность, скажу в этой связи несколько слов относительно «прозревания слепых» с помощью рентгеновских лучей. Упомянутая сенсация получила широкое распространение в газетах. Но разве не жестоко вселять подобные надежды, когда для этого нет никаких оснований? Ибо доказано лишь, что лучи не являются поперечными колебаниями. Если бы они оказались таковыми, мы обязательно нашли бы способ их преломления, чтобы стало возможным спроецировать достаточно малое изображение на сетчатку глаза. В действительности же реально спроецировать только тень очень небольшого предмета. Какую пользу можно извлечь из применения лучей с такой целью? В конечном счете с помощью отпечатка на сетчатой оболочке глаза контур небольшого предмета может быть опознан, но чтобы получить такое ощущение, чувства осязания более чем достаточно. Известно, что световые ощущения вызываются двумя способами — посредством механического удара и прохождения электрического тока. Оба эти процесса, полагаю, присутствуют в рентгеновских потоках, и, следовательно, можно предположить такого рода воздействие на зрительный нерв. Должен, однако, признаться, что я не могу подтвердить некоторые эксперименты, о которых сообщалось. Например, если держать руку перед закрытыми глазами, тень от нее легко различима, почти так же, как перед зажженной свечой; но когда закрыта трубка и проникновение света из нее совершенно исключено, мне не удается получить такое же ощущение. Следовательно, второй опыт объясняется прежде всего обычным светом, или же мои трубки работают иначе по сравнению с трубками других экспериментаторов. Будет, вероятно, уместно напомнить в этой связи, что при обычном ярком солнечном свете, особенно в южном климате, легко различать тени предметов и даже их примерные очертания с закрытыми глазами.

Исходя по-прежнему из посылки, что мы действительно имеем дело с материальными потоками, важно выяснить, при каких условиях лучше всего производить отпечатки на чувствительный экран или пластину. Прежде всего экспериментатор отметит, что, работая с определенной лампой и катушкой, он имеет две возможности для улучшения четкости отпечатков. Одна из них, если можно так выразиться, находится в лампе, другая — в катушке. Катушка, обычно состоящая из множества витков тонкого провода, очень чувствительна к изменению электрической емкости тел, подключенных к ее клеммам. Следовательно, электрическая емкость этих тел в значительной степени определяет разность потенциалов в такой катушке. При определенной степени разрежения эта емкость достигает такой величины, что напряжение возрастает до максимума, а это приводит к наибольшей скорости катодного потока и, как следствие, наиболее интенсивному излучению. Но при высокой степени разрежения катодные потоки, возможно, будут недостаточно обильными, как обычно и происходит. Чтобы добиться наилучшего результата, необходимо в целях согласованного взаимодействия этих двух факторов тщательно определять размеры лампы, а это практически весьма сложно сделать ввиду того, что экспериментатор вынужден использовать промышленные лампы, которые далеко не всегда являются самыми подходящими для его катушки. Такой несложный анализ указывает на огромное преимущество катушки, не имеющей тонких проводов и способной вырабатывать во вторичном контуре ток, превышающий потребности даже самой большой лампы.

После того как врач научится умело обращаться со своим аппаратом, он отметит, что для получения наилучшей резкости изображения, которая зависит главным образом от расстояния и степени непрозрачности исследуемого предмета, ему придется поддерживать определенное напряжение на клеммах трубки. Само собой разумеется, что резкость изображения тем выше, чем меньше площадь места, из которого исходят лучи, но это верно лишь для тех случаев, когда снимки делают с очень небольшого расстояния. Когда расстояния большие, использовать совсем маленькую излучающую поверхность невыгодно, поскольку в этом случае плотность излучения уменьшается до такой степени, что его действие крайне слабое. Разобравшись с этим вопросом, мы понимаем: при интенсивном излучении более плотные части тела тоже проницаемы и многие подробности теряются, хотя и при менее интенсивном излучении снимок может быть в целом слишком слабым, чтобы выявить существенные подробности.

Чтобы наглядно проиллюстрировать, как следует действовать наилучшим образом, я воспользуюсь простейшим примером. Предположим, что между двумя кусками черного сукна находится инородное тело, это может быть монета, и требуется определить ее местонахождение. Мы можем сделать это, поместив, к примеру, кусок картона позади ткани и затем выстрелив с определенного расстояния зарядом из мелкой дроби по сукну в то место, где предположительно находится монета. Дробь пройдет сквозь сукно во всех точках попадания, кроме того места, где находится монета, и на расположенном позади сукна картоне оно четко обозначится отсутствием отметин. Точно так же мы поступаем, направляя рентгеновские лучи на местонахождение подобного тела. Рентген вооружил нас ружьем, чтобы стрелять из него, — поистине замечательным ружьем, стреляющим пулями, проникающая способность которых тысячекратно превышает возможности пушечного ядра, и посылающим их, вероятно, на расстояние многих миль со скоростью, которая больше не может быть достигнута ни одним известным нам способом. Эти пули так малы, что мы можем стрелять ими по нашим тканям в течение дней, недель, месяцев и лет, по всей видимости, без пагубных последствий. Вместо картона, показывающего траекторию полета пуль, он дал нам то, что, по сути, называется экраном Рентгена, который начинает светиться во всех тех местах, куда попадают пули. Там, где они не могут попасть в экран из-за вмешательства непрозрачного тела, встающего на их пути, экран не светится, и мы видим теневой отпечаток предмета. Достаточно просто спроецировать теневое изображение предмета таким способом, но когда требуется показать более мелкие структурные детали предмета, возникают трудности. Сразу же обнаружится, что для достижения этой цели с наилучшим результатом необходимо в той или иной степени осуществить два условия. Во-первых, экран требуется изготовить из материала, способного засветиться от самого незначительного удара; и, во-вторых, все пули должны быть одинаковыми по величине и двигаться с одной скоростью. Ни одно из этих условий до сих пор не осуществлено на практике, потому что для всех известных нам веществ требуется сильный удар, чтобы вызвать свечение, и пока не найден способ, позволяющий добиться единообразия в скорости и величине гипотетических пуль. Не нужно долгих размышлений, чтобы прийти к заключению, что пули должны лететь с определенной скоростью, которая при всех условиях даст наибольшую степень изображения. Эта скорость легко определяется опытным путем. Резкость изображения будет, очевидно, наилучшей, если пули, проходящие сквозь наиболее плотные части тела, поражают экран так слабо, что не вызывают его свечения, в то время как пули, проходящие сквозь области с несколько меньшей плотностью, наталкиваются на экран с достаточной силой, чтобы заставить его слабо светиться. Чем более чувствителен экран к столкновению, то есть чем слабее удар, заставляющий экран светиться, тем больше деталей будет выявлено. Отсюда следует, что для высокоточного применения рентгеновских лучей наиболее подходящим является вещество не с наибольшим свечением, но с наибольшей чувствительностью.

Изложенные выше соображения убедили меня взять на вооружение следующий метод, который на поверку оказался весьма успешным. Сначала экран Рентгена прикладывается к предмету, который подлежит исследованию, при этом напряжение на клеммах трубки сильно понижено. Затем напряжение медленно и постепенно повышается. Некоторое время спустя вы увидите, что при определенном напряжении теневое изображение исследуемого предмета будет наиболее отчетливым. Но поскольку вакуум продолжает возрастать, напряжение, как правило, поднимается, и изображение теряет четкость, хотя экран начинает светиться более ярко. Как только четкость немного снижается, экспериментатор должен на короткое время изменить направление тока, что приведет к некоторому уменьшению вакуума. Когда ток опять начнет идти в том же направлении, в каком он шел сначала, то есть в направлении, при котором вакуум медленно и постепенно усиливается, изображение вновь становится четким, и с помощью такой несложной манипуляции можно добиться наилучшего результата. Впрочем, этот прием несет в себе еще одно преимущество, ибо частое реверсирование движения тока на обратное приводит к более яркой фосфоресценции экрана. Производя съемку, нам следует наблюдать за работой лампы по экрану и умело пользоваться переключателями, как описано выше.

В качестве практического примера эффективности этой процедуры могу лишь сослаться на один из случаев, привлекших мое внимание. Несколько месяцев тому назад я занимался историей болезни г-на Корнелиуса Мака из Уотертауна, штат Массачусетс. Много лет тому назад при исполнении служебного долга г-н Мак был ранен пулей, которая застряла где-то в грудной клетке, и оказалось невозможно определить ее местонахождение. Я много раз тщетно всматривался в экран, поскольку, хотя лучи с такой легкостью пронизывали тело, что заставляли расположенный позади него экран светиться голубовато-белым светом и обнаруживали все кости, не мог найти на нем изображение засевшей пули. Затем, прибегнув к указанному выше способу, сразу же с легкостью определил точное местонахождение искомого предмета, между лопаточной костью и одним из ребер, и пулю успешно извлекли.

«Electrical Review», 1 декабря 1896 г.

 


Поделиться с друзьями:

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.027 с.