Компоновки и конструкции конденсаторов паровых турбин — КиберПедия 

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Компоновки и конструкции конденсаторов паровых турбин

2017-09-10 1197
Компоновки и конструкции конденсаторов паровых турбин 0.00 из 5.00 0 оценок
Заказать работу

 

По отношению к оси паровой турбины конденсаторы могут располагаться в продольном или поперечном направлениях. При поперечной компоновке оси конденсаторных трубок направлены поперек продольной оси турбины. Продольно расположенные конденсаторы могут выполняться одно-, двух-, и трехсекционными. Из-за различной начальной температуры охлаждающей воды, поступающей в отдельные секции, давление в них будет различным. Такие конденсаторы называются секционированными. По числу потоков охлаждающей воды в отдельном конденсаторе их различают как однопоточные и двухпоточные. Различают также подвальное расположение конденсаторов, боковое и осевое. В основном применяется подвальное расположение. Различные виды компоновок конденсаторов для паровых турбин электростанций показаны на рис. 17.7, а в табл. 17.1 дано их краткое описание.

Таблица 17.1. Компоновки конденсаторов паровых турбин

 

Описание компоновки конденсатора Схема на рис.19.6 Паровая турбина
Один подвальный поперечный конденсатор а ЛМЗ: К-50-8,8; Т-50-12,8; ПТ-60-12,8; ПТ-80/100-12,8 ТМЗ: ПТ-135/165-12,8 КТЗ: все турбины
Два подвальных поперечных конденсатора б ЛМЗ: К-100-8,8; К-200-12,8 ХТЗ: К-160-12,8 ТМЗ: ПТ-175/215-12,8; Т-100-12,8
Один подвальный поперечный конденсатор в, г ЛМЗ: К-300-23,5 ХТЗ: К-300-23,5 ТМЗ: Т-250/300-23,5
Два подвальных поперечных конденсатора д ХТЗ: К-500-23,5; К-220-4,3
Три подвальных поперечных конденсатора е ХТЗ: К-1000-5,9/25-2
Четыре подвальных поперечных конденсатора ж ХТЗ: К-500-6,4/50; К-750-6,4/50
Два боковых продольных конденсатора з ХТЗ: К-1000-5,9/25
Два подвальных продольных конденсатора, подключенных последовательно по охлаждающей воде и, к ЛМЗ: К-500-23,5; К-800-23,5; К-1200-23,5
Два боковых продольных конденсатора; каждый из конденсаторов состоит из трех секций, подключенных последовательно по охлаждающей воде л ХТЗ: К-1000-5,9/25-1

 

Рис. 17.7. Компоновочные решения по установке конденсаторов паровых турбин

 

На рис. 17.8 приведен общий вид одного из двух конденсаторов 800-КЦС-3 для паровой турбины К-800-23,5 ЛМЗ. Конденсатор состоит из двух секций 2 и 6. Охлаждающая вода через два патрубка 10 попадает в переднюю водяную камеру 1, а из нее - в трубки первой секции и затем в промежуточную камеру 4. Из нее вода поступает во вторую секцию 6, затем в заднюю водяную камеру 7 и через два выходных патрубка 8 направляется в систему охлаждения. Каждый конденсатор является одноходовым и однопоточным. Конденсаторы установлены на пружинных опорах 9 таким образом, чтобы создать угол наклона трубок к горизонту (около 30). Такой наклон способствует росту коэффициента теплопередачи от пара к охлаждающей воде. Трубный пучок конденсатора состоит из 19625 трубок с наружным диаметром 28 мм и толщиной стенки 1 мм. Длина трубок в каждой секции 11,53 м, а общая поверхность охлаждения конденсатора составляет 41200 м2.

 

Рис. 17.8. Конденсатор 800-КЦС-3 ( один из двух ) для паровой турбины К-800-23,5 ЛМЗ:

1 – передняя водяная камера; 2, 6 – первая и вторая секции конденсатора; 3 – входной паровой патрубок;

4 – промежуточная камера; 5 – горловины конденсаторов (переходной патрубок); 7 – задняя водяная камера;

8 – выходные патрубки по охлаждающей воде; 9 – пружинные опоры; 10 - входные патрубки по воде

 

На рис. 17.9 представлена компоновка трубного пучка рассмотренного ранее конденсатора. Здесь применена «пальчиковая» схема компоновки с разделением трубного пучка на модули 1. Модуль представляет собой сплошной вертикально расположенный массив трубок с ромбической разбивкой. В средней части массива двумя щитами 2 и 3 образована зона отсоса паровоздушной среды (выделенного воздухоохладителя в таком пучке нет). При использовании в качестве материала конденсаторных трубок титанового сплава их приваривают к трубным решеткам.

Рис. 17.9. Трубный пучок конденсатора модульной конструкции

 

На рис. 17.10 показана конструкция конденсатора теплофикационной турбины Т-250/300-23,5 ТМЗ. По воде конденсатор выполнен двухходовым. Его главной особенностью является наличие встроенного теплофикационного пучка, служащего для нагрева обратной сетевой воды или подпиточной воды в отопительный период. Кроме того, в горловину конденсатора встроен подогреватель низкого давления. Пример компоновки конденсаторов для паровой турбины Т-100-12,8 ТМЗ приведен на рис. 17.11. Большая часть конденсаторных трубок (~ 85%) предназначена для конденсации пара охлаждающей водой. Остальная часть служит для подогрева обратной сетевой воды, поступающей во встроенный пучок через отдельные водяные камеры.

Рис. 17.10. Конденсатор турбины Т-250/300-23,5 ТМЗ:

1 - корпус ЦНД; 2 - встроенные ПНД; 3 - основной пучок; 4 - теплофикационный пучок; 5 – конденсатосборник

 

Конструктивная схема ЦНД паровой турбины с боковой компоновкой выходных устройств и конденсаторов применяется в турбинах АЭС. Например, Харьковским турбинным заводом эта схема принята в серии тихоходных турбин К-500-5,9/25 и К-1000-5,9/25-1. На рис. 17.11 показана компоновка ЦНД турбины К-500-5,9/25 ХТЗ для АЭС с боковым расположением конденсаторов. К преимуществам такой компоновки относятся уменьшение затрат на строительные конструкции машинного зала, ужесточение фундамента турбины, повышение эффективности выходных устройств, а также наличие вертикальных компенсаторов в корпусе выходного патрубка ЦНД, что дает возможность оптимальной организации взаимных перемещений корпуса ЦНД и конденсатора. Кнедостаткам боковой компоновки выходных устройств относят рост протяженности вакуумных разъемов и опасность заброса влаги в проточную часть последней ступени. Следует отметить, что корпуса ЦНД таких турбин опираются на фундамент боковыми лапами с пружинами, воспринимающими около половины нагрузки от неподвижных частей цилиндра, что снимает с выходных патрубков функции несущей конструкции. Поэтому деформация их корпусов под воздействием высокого перепада давлений и неравномерного прогрева не нарушает условия центровки статорных элементов ЦНД паровой турбины.

Рис. 17.11. Поперечный разрез паровой турбины К-500-5,9/25 ХТЗ


Поделиться с друзьями:

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.008 с.