Глава 2. 0. Строение и состав Земли — КиберПедия 

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Глава 2. 0. Строение и состав Земли

2017-08-11 500
Глава 2. 0. Строение и состав Земли 0.00 из 5.00 0 оценок
Заказать работу

 

Форма Земли.

 

Диаметр Земли 12756 км; масса 5,98⋅1024 кг; плотность 5510 кг/м3; период вращения 23 ч 56 м 4,1 с; период обращения 365,26 суток; эксцентриситет орбиты 0.017; площадь поверхности – 510 млн. км2; объем – 1,083⋅1012 км3.

 

И.Ньютон первым показал, что форма Земли более сложная, чем шар, и доказал, что главным фактором в создании формы Земли является ее вращение и, вызванная этим центробежная сила. Поэтому форма Земли зависит от совместного действия сил гравитации и центробежных. Хорошо известно, что равнодействующая этих сил называется силой тяжести. Многочисленные геодезические измерения позволили доказать, что Земля представляет собой эллипсоид, вычисленный в 1940 г. геодезистом А.А.Изотовым и названный им эллипсоидом Красовского в честь Ф.Н.Красовского известного русского геодезиста. Параметры эллипсоида Красовского: экваториальный радиус – 6378,245 км; полярный радиус – 6356,863 км; полярное сжатие α = 1/298,25. Однако в плоскости экватора наибольший и наименьший радиусы отличаются на 213 м. Следовательно Земля – это трехосный эллипсоид или сфероид, чем определяется воображаемая форма Земли (рис. 2.1).

 

 

Рис. 2.1.1. Поверхность рельефа, сфероид и геоид

 

 

Реальная форма Земли лучше описывается фигурой геоида (землеподобная) – эквипотенциальной поверхностью невозмущенного океана, продолженной и на континенты. Сила тяжести в каждой точке поверхности геоида направлена перпендикулярно к ней. Сейчас построена карта геоида, приведенная к сжатию 1/298,25, с помощью как наземных гравиметрических, так и спутниковых наблюдений. На карте ясно видны впадины и выпуклости на поверхности Земли с амплитудой в десятки метров, так что форма Земли скорее напоминает «обгрызанное яблоко». Аномалии геоида обусловлены неравномерным распределением масс с различной плотностью внутри Земли.

 

Внутреннее строение Земли


Самая глубокая скважина на Земле, пробуренная на Кольском полуострове недалеко от Мурманска, достигла всего лишь 12800 м. Бурение под толщей океанских вод, осуществляемое со специальных плавучих буровых установок на кораблях сначала “Гломар Челленджер”, а потом “Джоидес Резолюшн”, дало результат всего лишь в 1,5 км. Знание внутреннего строения Земли означает, что известны распределения плотности вещества и его состояния, давления, температуры, напряженности магнитного поля от поверхности до центра Земли, а кроме того, латеральные вариации этих параметров.

Находясь на поверхности Земли (12 км скважины это все равно поверхностный слой), мы можем определить много параметров, характеризующих Землю: состав вещества (горных пород, вод, океана, атмосферы) и его возраст, температуру, силу притяжения к Земле (ускорение силы тяжести), величину магнитного поля, и наблюдать множество явлений: извержения вулканов, землетрясения, в особенности катастрофические, и измерять времена пробега сейсмических (упругих) волн, видеть свечения полярных сияний и многое другое.

Нас интересует, в какой мере сведения, получаемые на поверхности Земли, могут пролить свет на устройство внутренних, недоступных частей Земли, вплоть до ее центра? Задачи подобного рода называют обратными и, очевидно, что они не имеют единственного решения. Это напоминает ситуацию с покупкой арбуза – как, не взрезая арбуз, определить степень его спелости по созерцанию его поверхности? Это и есть обратная задача, при меры которых будут приведены ниже.

 

Геологам хорошо известно внутреннее строение Земли, т.к. им на помощь пришел метод, который, как в медицине рентген, позволяет заглянуть в недоступные места планеты. Это - сейсмические волны (“сейсма” - сотрясение, греч.), возникающие в Земле от землетрясений, ядерных и крупных промышленных взрывов, которые пронизывают всю Землю, преломляясь и отражаясь на разных границах смены состояния вещества. По образному выражению известного геофизика каждое сильное землетрясение заставляет Землю долго гудеть, как колокол.

Сейсмологический метод находится в ряду других геофизических методов, но для целей познания глубин Земли он один из самых важных.

Волна - это распространение некоторой деформации в упругой среде, т.е. изменение объема или формы вещества. При деформации в веществе возникает напряжение, которое стремится вернуть его к первоначальной форме или объему. Известно, что величина напряжения (ε) на величину деформации (τ) называется модулем упругости µ.


µ = τ (1)  
ε  
     

 

Выделяют два типа сейсмических волн: объемные и поверхностные, из названий которых видна область их распространения (рис. 2.2.).

 

Объемные волны бывают продольными и поперечными. Они были открыты в 1828 г. Пуассоном, а идентифицированы английским сейсмологом Олдгеймом в 1901 г.

Продольные волны - это волны сжатия, распространяющиеся в направлении движения волны. Они обозначаются латинской буквой “Р” (primary - первичный, англ.), т.к. у них скорость распространения выше других волн и они первыми приходят на сейсмоприемники. Скорость продольных волн:

Vр = κµ (2)
  ρ  

 

 

где К- объемный модуль упругости или модуль всестороннего сжатия и µ - модуль сдвига, определяемый величиной напряжения, необходимого, чтобы изменить форму тела.

 

Таким образом, волна Р изменяет форму тела.

 

Поперечная волна, обозначаемая буквой S (secondary - вторичный, англ.), это волна сдвига, при которой и деформации в веществе происходят поперек направления движения волны. Скорость поперечных волн:

Vs = µ (3)
  ρ  

 

 

Волна S изменяет только форму тела и она, как менее скоростная, приходит на сейсмоприемник позднее волны Р, поэтому и называется “вторичной”. Таким образом, Vp всегда больше Vs

 

 

Поверхностные волны, как следует из названия, распространяются в поверхностном слое земной коры. Различают волны Лява и Рэлея. В первых из них колебания осуществляются только в горизонтальной плоскости поперек направления движения волны. Волны Рэлея подобны волнам на воде, в них частицы вещества совершают круговые движения (рис. 2.2, в, г).


 

Рис. 2.2.1. Типы сейсмических волн. А – объемные волны: а – продольные, б – поперечные. Б – поверхностные волны: в – Лява, г – Релэя. Стрелками показано направление движения волны

 

Проследим путь объемной волны от очага землетрясения или взрыва. При встрече с каким либо слоем, отличающимся рядом признаков от вышележащего, волна отражается и достигает сейсмографа на станции (рис.2.2.3,а)


 

 

Рис. 2.2.3. Схема отражения сейсмических волн от поверхности пласта горных пород (а); метод работы НСП (непрерывное сейсмическое профилирование) (б); прохождение отраженных и преломленных волн через слои земной коры от источника до приемника (в): 1 – вертикальное отражение; 2 – широкоугольные отражения, 3 – преломленные волны

 

. Тоже самое происходит и при морских сейсмических исследованиях. В других случаях волна может преломляться на границе слоев, увеличивая или уменьшая свою скорость в зависимости от плотности слоя.

Когда происходит сильное землетрясение, сейсмические волны распространяются во все стороны, пронизывая земной шар во всех направлениях. Расставленные по всему миру сейсмические станции принимают сигналы от волн разного типа, преломленных и отраженных. Проходя через слои пород разного состава и плотности они изменяют свою скорость, а, регистрируя эти изменения внутри земного шара можно выделить главные границы или поверхности раздела (рис. 2.2.4).


 

Рис. 2.2.4. Происхождение продольных (Р) и поперечных (S) волн через Землю. Поперечные волны не проходят через жидкое внешнее ядро, а у продольных есть «зона тени» в 35°, так как в жидком ядре волны преломляются

 

Сейсмограммы фиксируют время пробега внутри Земли сейсмических волн. А нам необходимо знать скорость волн. Для этого решается обратная задача на основе системы уравнений, полученных Адамсоном и Вильямсом в. Сейсмические методы непрерывно совершенствуются и по современным данным внутренняя структура Земли выглядит следующим образом.

Земная кора ограничивается снизу очень четкой поверхностью скачка скоростей волн Р и S, впервые установленной югославским геофизиком А.Мохоровичечем в 1909 г.

и получившей его имя: поверхность Мохоровичича, или Мохо, или, совсем кратко, поверхность М (рис.2.2.5).


 

 

Рис. 2.2.5. Скорости сейсмических волн и плотность внутри Земли. Сейсмические волны:

 

1 – продольные, 2 – поперечные, 3 – плотность

 

 

Вторая глобальная сейсмическая граница раздела находится на глубине 2900 км и была выделена в 1913 г. немецким геофизиком Бено Гутенбергом и также получила его имя. Эта поверхность отделяет мантию Земли от ядра. Примечательно, что ниже этой границы волны Р резко замедляются, теряя 40% своей скорости, а волны S исчезают, не проходя ниже. Т.к. для поперечной волны скорость определяется как модуль сдвига, деленный на плотность, а модуль сдвига в жидкости равен нулю, то и вещество, слагающее внешнюю часть ядра должно обладать свойствами жидкости.

На глубине 5120 км снова происходит скачкообразное увеличение скорости волн Р,

 

а путем применения особого метода показано, что там появляются и волны S, т.е. эта часть ядра - твердая.

Таким образом, внутри Земли устанавливается 3 глобальные сейсмические границы, разделяющие земную кору и мантию (граница М), мантию и внешнее ядро (граница Гутенберга), внешнее и внутреннее ядро.

Однако, на самом деле границ, на которых происходит скачкообразное изменение скорости волн Р и S больше и сами границы характеризуются некоторой переходной областью Уже давно сейсмолог К.Буллен, разделив внутреннюю часть Земли на ряд оболочек дал им буквенные обозначения (рис. 2.2.6). В последние годы была установлена еще одна глобальная сейсмическая граница на глубине 670 км, отделяющая верхнюю мантию от нижней и являющаяся очень важной для понимания процессов, идущих в верхних оболочках Земли.

Ниже поверхности М, скорости сейсмических волн увеличиваются, но на некотором уровне, различном по глубине под океанами и материками, вновь уменьшаются, хотя и незначительно, причем скорость поперечных волн уменьшается


больше. В это слое отмечено и повышение электропроводности, что свидетельствует о состоянии вещества, отличающегося от выше и нижележащих слоев верхней мантии. Особенности этого слоя, получившего название астеносфера (“астенос” - слабый, мягкий, древн.греч.), объясняются возможным его плавлением в пределах 1-2%, что обеспечивает понижение вязкости и увеличение электропроводности. Плавление проявляется в виде очень тонкой пленки, обволакивающей кристаллы при Т порядка +1200 ° С.

 

 

Рис. 2.2.6. Внутреннее строение Земли. I – литосфера, II – верхняя мантия, III – нижняя мантия (пунктиром показаны уровни второстепенных разделов), IV – внешнее ядро, V – внутреннее ядро: 1 – земная кора; 2 – астеносфера; 3-4 - переходные слои. Цифры слева – доля геосфер (в % от объема Земли), буквы слева – геосферы по К.Буллену

 

Астеносферный слой расположен ближе всего к поверхности под океанами, от 10-20 км до 80-200 км, и глубже, от 80 до 400 км под континентами, причем залегание астеносферы глубже под более древними геологическими структурами, например, под докембрийскими платформами, чем под молодыми. Мощность астеносферного слоя, как и его глубина сильно изменяются в горизонтальном и вертикальном направлениях. В современных геотектонических представлениях астеносферному слою отводится роль своеобразной смазки, по которой могут перемещаться вышележащие слои мантии и коры.

 

Земная кора и часть верхней мантии над астеносферой носит название литосфера (“литос” - камень, греч.). Литосфера холодная, поэтому она жесткая и может выдержать большие нагрузки. На глубине в 1000 км в нижней мантии скорость волн Р достигает 11,2-11,5 км/с, а Vs = 7,2-7,3 км/с. На границе нижней мантии и внешнего ядра Vр уменьшается

 

с 13,6 км/с до 8,1 км/с, затем снова возрастает до 10,5 км/с, но в переходном слое F от внешнего ядра к внутреннему, снова падает и опять возрастает во внутреннем, твердом ядре до 11,2-11,3 км/с, не достигая однако, скорости низов мантии.


Плотность Земли - это важный параметр, который косвенно помогает оценить сейсмические границы раздела внутри Земного шара. Известно, что средняя плотность горных пород на поверхности равна 2,7-2,8 кг/м3. В тоже время средняя плотность Земли 5,51 кг/м3. Она вычислена на основании периода свободных колебаний Земли, момента ее инерции и общей массы, равной 5,976⋅1027 г. Расчетные данные показывают, что плотность возрастает с глубиной и также, как скорость сейсмических волн, скачкообразно. Верхи мантии, сразу под границей М характеризуются плотностью уже в 3,3-3,4 кг/м3, т.е. наблюдается резкий скачок. Особенно сильный скачок плотности от 5,5 кг/м3 в низах мантии до 10-11,5 кг/м3 во внешнем ядре, совпадает с границей Гутенберга, при этом внешнее ядро обладает свойствами жидкости. Величина плотности во внутреннем ядре остается предметом догадок, но должна быть от 12,5 до 14,0 кг/м3 (рис.2.2.7).

 

 

Таким образом, изменение и нарастание плотности в целом совпадает с главными сейсмическими разделами в Земле. Заметим, что доля коры в общем объеме Земли равна 1,5%, мантии -82,3%, а ядра -16,2%. Отсюда ясно, что средняя плотность в 5,5 кг/м3 должна обеспечиваться умеренно плотной мантией и очень плотным ядром, в котором находится 32% массы Земли (а по объему ~16%).

 

Давление внутри Земли рассчитывается исходя из той плотности, которая получается при интерпретации сейсмических границ. При этом предполагается, что Земля как планета находится в состоянии гидростатического равновесия. Давление нарастает постепенно, составляя в Мпа на подошве коры, границы М - 1·10 3, на границе мантия - ядро- 137· 103, внешнего и внутреннего ядра 312 · 103 и в центре Земли - 361 · 103 (рис.2.2.7).

 

Ускорение силы тяжести, как известно, на уровне океана, на широте 45° составляет 9,81 м/с2 или 981 гала, а в центре Земли равняется 0. У границы мантии и ядра величина ускорения силы тяжести достигает максимального значения в 10,37 м/с2 и с этого уровня начинает быстро падать, получая значение на границе внешнего и внутреннего ядра в 4,52 м/с2. Земля обладает внешним гравитационным полем, отражающим распределение в ней масс. Величина силы тяжести зависит от расстояния до центра Земли и от плотности пород (рис.2.2.7).


 

Рис. 2.2.7. Изменение ускорения силы тяжести (1), давления (2) и плотности (3) внутри Земли

 

Для геологов очень важно знать закономерности размещения плотностных неоднородностей в земной коре, что позволяют сделать гравитационные аномалии - отклонения от общего внешнего гравитационного поля. Сила гравитации будет, естественно, больше над более плотными массами. Современные приборы позволяют измерять силу тяжести с большой точностью, вплоть до 10 -8, что равно изменению расстояния от поверхности Земли всего на 4 см. Более подробно о гравитационном поле будет рассказано в других главах.

 

Приведем пример обратной задачи – определение плотности Земли по ускорению силы тяжести.

Закон всемирного тяготения, открытый Ньютоном более 300 лет тому назад, утверждает, что две точечные массы притягиваются друг к другу с силой, прямо пропорционален произведению их масс и обратно пропорционален квадрату расстояния между ними. Суммарная сила тяготения точечных масс, которыми набита Земля, действует на точечные массы любого тела на поверхности Земли. Из соображений симметрии, сила тяготения со стороны земли равна действию одной точечной массы, расположенной в центре Земли, масса которой равна сумме масс всех точек внутри Земли. Этот результат – есть решение обратной задачи. Записывая закон Ньютона:

 

F = r ⋅m⋅M/R2


Где r – гравитационная постоянная, определяемая экспериментально (опыты Кавэндиша, 1788), М – масса Земли, R – ее радиус, мы можем рассчитать силу, с которой любая масса м притягивается к Земле.

Радиус земли был измерен очень давно по измерению длины дуги на поверхности и углу между концами дуги, исходя из параллельности солнечных лучей – Эратосфен сделал это 2500 лет тому назад – тоже решив обратную задачу.

Поскольку сила притяжения к Земле есть вес:

 

F = m⋅g = r ⋅m ⋅ M/R2 откуда

 

G = r ⋅ M/R2

 

В свою очередь, масса Земли равна объему сферы радиуса R, умноженному на плотность

 

d:

 

M = d⋅ (4/3) ⋅pi⋅R3

 

Тогда ускорение силы тяжести на поверхности Земли равно:

 

G = r ⋅ (4/3) ⋅pi ⋅ R⋅ d

 

Осталось совсем немного – определить плотность вещества Земли. На поверхности плотность пород измерена – она равна 2670 кг/м3. Но этой плотности, если она равна плотности вещества земли, не хватает, чтобы создать ускорение силы тяжести, равное, как известно, 9,81 с/сек2. Для этого нужна плотность 5,51 кг/ м3. Стало быть, плотность внутри Земного шара растет по мере удаления от поверхности к центру Земли. По какому закону изменяется плотность внутри Земли, нам неизвестно. Из измерений силы тяжести на поверхности этого узнать нельзя.

 

Механические свойства вещества Земли на всех уровнях важна для понимания геодинамических процессов. Литосфера, т.е. земная кора и часть верхней мантии до глубин примерно в 200 км ведет себя в целом как более хрупкая, чем нижняя (гранулито-базитовый слой). Жесткость литосферы оценивается в 1024 Нм и она обладает неоднородностью в горизонтальном направлении. Именно в литосфере, особенно в ее верхней части образуются разломы.

 

Астеносфера, подстилающая литосферу, также обладает неоднородностью в горизонтальном направлении и изменчивой мощностью. Пониженные скорости сейсмических волн в астеносфере хорошо объясняется плавлением всего лишь 2-3% вещества. Астеносферный слой по современным представлениям играет важнейшую роль

в тектонической и магматической активности литосферных плит и обеспечивает их изостатическое равновесие, несмотря на то. Что сам слой может быть прерывистым, например, отсутствуя под древними докембрийскими платформами.


Располагающаяся ниже астеносферного слоя мантия, особенно нижняя, глубже 670 км, обладает вязкостью около 1021 м2/с. Эта очень высокая вязкость, тем не менее, не является непреодолимым препятствием для медленных конвективных перемещениях мантийного вещества, что подтверждается так называемой сейсмической томографией, позволяющей «увидеть» очень незначительные плотностные неоднородности в мантии. Глубже 700 км в мантии не зафиксировано очагов землетрясений, что свидетельствует о невозможности возникновения сколов.

 

Выше говорилось о модели строения Земли К.Е.Буллена, созданной в 1959-1969 гг.

 

В последнее время используется более новая, уточненная модель, называемая PREM (Prelimerary Reference Earth Model), характеризуемая «нормальным», т.е. усредненным распределением с глубиной различных физических параметров, в том числе скоростей распространения сейсмических волн.

Сейсмическая томография базируется на измерении скоростей объемных и поверхностных сейсмических волн, распространение которых направлено таким образом, чтобы «просветить» какое-то непрозрачное тело, например, массив горных пород, который нельзя наблюдать непосредственно. Имея модель PREM с ее расчетными скоростями сейсмических волн, при обработке огромного количества данных, полученных в результате изучения землетрясений, которая стала возможной только после появления особо быстродействующих ЭВМ, геофизики получают отклонение реальных сейсмических волн по сравнению со стандартной моделью, которое составляет максимум первые проценты, обычно меньше. Увеличение скоростей волн свидетельствует об увеличении плотности вещества и наоборот. Таким образом, выявляются латеральные неоднородности в мантии, впервые продемонстрированные американскими геофизиками Д.Л.Андерсоном и А.М.Дзевонским еще в начале 80-х годов ХХ в. Более плотные, т.е. холодные и менее плотные, т.е. более нагретые участки мантии образуют очень сложную картину, в целом подтверждающие тектонику литосферных плит, т.к. в активных континентальных окраинах хорошо видны погружающиеся под более легкую континентальную кору, холодные и более плотные пластины коры океанической.

 

Сейсмотомография позволила установить в самых низах мантии примечательный слой D′′ (англ. «Ди – дабл- прайм» или «D дважды прим», русск.), верхняя граница которого неровная, мощность изменяется в горизонтальном направлении и это слой может быть даже частично расплавлен (рис.2.2.8). В верхах нижней мантии обнаружен слой также с пониженной вязкостью, как и астеносферный и, т.о., в мантии устанавливается 3 слоя с пониженной вязкостью.


Сейсмотомография дала очень много для выявления неоднородностей в строении мантии Земли.

 

Рис. 2.2.8. Рельеф земного ядра по данным сейсмической томографии Земли (изолинии проведены через 2 км)


2.3. Химический и минеральный состав недр Земли.

 

Определение химического и минерального состава геосфер Земли представляет собой очень сложную задачу, которая во многом может быть решена лишь весьма приблизительно, основываясь на косвенных данных. Прямые определения возможны только в пределах земной коры, горные породы которой неоднородны по своему составу и сильно различаются в разных местах.

Средний химический состав горных пород земной коры приведен в таблице 2 по данным А.А.Ярошевского, где четко видна разница в составе между континентальной и океанической корой, которая носит принципиальный характер. Верхний слой континентальной коры состоит из гранитов и метаморфических пород, которые обнажаются на кристаллических щитах древних платформ. Нижний слой коры практически нигде не вскрыт, но в его составе должны преобладать основные породы – базиты, как магматические, так и метаморфические. Об этом свидетельствуют геофизические и экспериментальные данные. Тем не менее, приведенный выше средний состав земной коры, может быть отнесен только к верхней части земной коры, тогда как состав нижней коры все еще остается областью догадок.

Горные породы, слагающие континентальную кору, несмотря на свое разнообразие, представлены несколькими главными типами. Среди осадочных пород преобладают песчаники и глинистые сланцы (до 80%), среди метаморфических – гнейсы и кристаллические сланцы,а среди магматических– граниты и базальты. Следуетподчеркнуть, что средние составы песчаников и глинистых сланцев близки к средним составам гранитов и базальтов, что свидетельствует о происхождении первых за счет выветривания и разрушения вторых.

 

В океанической коре по массе абсолютно преобладают базальты (около 98%), в то время как осадочные породы самого верхнего слоя имеют очень небольшую мощность. Самыми распространенными минералами земной коры являются полевые шпаты, кварц, слюды, глинистые минералы, образовавшиеся за счет выветривания полевых шпатов. Подчиненное значение имеют пироксены и роговые обманки.

Состав верхней и нижней мантии может быть определен только предположительно, основываясь на геофизических и экспериментальных данных. Верхняя мантия, ниже границы Мохоровичича с наибольшей долей вероятности сложена ультраосновными породами,обогащеннымиFeи Мg,но в тоже время обеденными кремнеземом.Неисключено, что среди пород верхней мантии много эклогитов, которые образуются при высоких давлениях, о чем свидетельствует появление в них минерала граната, устойчивого при том давлении, которое существует в верхней мантии.


Таблица 3.

 

Корреляция минеральных преобразований в мантии, уровней глобальных сейсмических разделов (подчеркнуты) и предложенных границ глубинных геосфер, основанных на данных сейсмической томографии

 

(по Д.Ю.Пущаровскому)1

 

Глубина, Минеральные преобразования     Границы сфер  
в км                      
                  Структурная перестройка оливина α - (Mg, Fe2) SiO4 в   Верхняя часть  
             
                  вадслеит β - (Mg, Fe)2SiO4              
                      мантия    
                  Структурная перестройка вадслеита в рингвуд - γ-    
                  модификацию (Mg, Fe2) SiO4 со структурой шпинели   Верхняя    
400-600     меджорит Mg3 (Fe, Al, Si)2 Si3O12   в гранат-   часть  
    Трансформация пироксена (Mg, Fe) SiO3     Нижняя  
                                     
                             
          Шпинелеподобный рингвудит трансформируется в      
                  ассоциацию (Mg, Fe) перовскита и Mg-вюстита        
    850-900     Пироп Mg3 Al2 Si3 O12 → в ромбический перовскит      
                  (Mg, Fe) SiO3 ↓→ в твердый раствор корунд-      
                         
                  ильменита Al2O3             мантия    
        Перестройка SiO2 со структурой стишовита в    
                  структурный тип CaCl2 (ромбический аналог рутила    
                  TiO2)                    
        Изменение характера межатомных связей      
                  (металлизация) вюстита FeO              
                 
        SiO2 со труктурой CaCl2 переходит в фазу со структрой,      
                  промежуточной между α - PbO2 и ZrO2; происходит Нижняя    
                  распад перовскитоподобного MgSiO3; изменение    
                  электронной структуры атомов Fe(HS→LS) в структуре    
                       
                  вюстита FeO; образование FeO со структурой типа      
                  никелина NiAs                  
             
  220-2300   Трансформация Al2O3 со структурой корунда в фазу с      
                  ромбической структурой Rh2O3 (II)            
                                     
                                  Внешнее ядро  
                                       


 

 

1 В связи с негомогенностью мантии, таблицу следует рассматривать в известной мере как модельную


Основными минералами вещества верхней мантии являются оливин и пироксены. По мере увеличения глубины, твердое вещество мантии скачкообразно, на границах, устанавливаемых сейсмическим методом, претерпевает структурные преобразования, сменяясь все более плотными модификациями минералов и при этом не происходит изменение химического состава вещества, как это показано Д.Ю.Пущаровским (табл. 3).

Химический и минеральный состав ядра предполагается на основании расчетных давлений, около 1,5 Мбар, существующих глубже 5120 км. В таких условиях наиболее вероятно существование вещества, состоящего из Fe с 10% Ni и некоторой примеси серы во внешнем ядре, которая образует с железом минерал троилит. Как полагает А.А.Ярошевский, именно эта легкоплавкая эвтектическая смесь обеспечивает стабильность жидкого внешнего ядра, выше которого находится твердая силикатная мантия.

 

Таким образом, Земля оказывается расслоенной на металлическое ядро и твердую силикатную мантию и кору, что обуславливается различной плотностью и температурой плавления,т.е. различиями физических свойств вещества мантии и ядра согласно представлениям А.А.Ярошевского. Эти различия могли сформироваться еще на стадии гетерогенной аккреции планеты.

Земная кора – тонкая оболочка нашей планеты, обогащена легкоплавкими соединениями, образовавшимися при плавлении мантийного вещества. Поэтому магматизм, во всех его проявлениях, и является тем главным механизмом, обеспечивающим формирование легкоплавкой фракции и ее продвижение во внешнюю зону Земли, т.е. формирование земной коры. Магматические процессы фиксируются с самого раннего геологического времени, породы которого доступны наблюдению, а, следовательно, в это же время началась дегазация мантии, в результате чего были сформированы атмосфера и гидросфера.

 

Магнитное поле Земли.

 

Магнитное поле современной Земли характеризуется: склонением D, наклонением I и напряженностью Н, измеряемую в теслах (рис. 2.4.1).


Рис. 2.4.1. Основные компоненты магнитного поля Земли. М.П. – направление на магнитный полюс; Г.П. – направление на географический полюс. А – вертикальная плоскость; В – поверхность Земли на ограниченном участке; С – магнитная силовая линия. Составляющие полного вектора Т магнитного поля: Н – горизонтальная; Z – вертикальная; I – магнитное наклонение; D – магнитное склонение

 

Существуют карты линий равных величин магнитных склонений изогон и линий равных магнитных наклонений изоклин. На северном магнитном полюсе наклонение равно +90 О (на южном соответственно -90О). В пределах магнитного экватора, не совпадающего с географическим, наклонение равно нулю. Современное магнитное поле Земли лучше всего описывается полем геоцентрического смещенного диполя с наклоном по отношению к оси вращения Земли в 11,5°.

 

Напряженность современного магнитного поля составляет около 0,5 эрстед или 0,1 а/м, и считается, что в геологическом прошлом величина напряженности могла колебаться, но максимум на порядок. Геомагнитное поле Земли последние 2,0-3,5 млрд.лет принципиально не изменялось, как это установлено палеомагнитными

исследованиями, а это больше половины ее геологической истории. Еще в XV веке было обнаружено изменение магнитного склонения со временем. Так называемые вековые

вариации всех остальных элементов магнитного поля сейчас установлены достоверно и
регулярно составляются специальные карты изопор,т.е .линий равных годовых
изменений какого-либо элемента магнитного поля.    
Такие карты можно использовать только в определенный, не более 10 лет, интервал
времени, в связи с периодичностью вековых, особенно “быстрых” вариаций. Все

 

магнитные материковые аномалии, например, изогоны, медленн


Поделиться с друзьями:

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.085 с.