Временные пределы выживания ДНК — КиберПедия 

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Временные пределы выживания ДНК

2017-08-07 635
Временные пределы выживания ДНК 0.00 из 5.00 0 оценок
Заказать работу

 

Законы физики и биохимии говорят нам о том, что ДНК не живет вечно даже в наиболее подходящей для ее сохранения среде. Учитывая это, нам будет полезно знать возраст образца, геном которого мы собираемся секвенировать, чтобы предсказать, насколько успешным окажется этот проект. Хотя и не существует четкого правила, определяющего точный промежуток времени, свыше которого ДНК не выживает, результаты биохимического моделирования указывают на верхний предел около 100 тысяч лет при умеренной температуре окружающей среды. Но на практике то, насколько стар может быть образец с сохранной ДНК, очень сильно варьирует и зависит от того, где он был найден, какой это тип ткани (шерсть, зуб, кость, мумифицированные мягкие ткани, яичная скорлупа) и что происходило с этим образцом в течение всего этого времени. В образцах, находящихся в тепле, погруженных в воду и открытых для воздействия ультрафиолета, спустя год может не остаться ни одного фрагмента полезной ДНК. В Арктике, если образец лишился мягких тканей и сразу после этого был заморожен, а затем пролежал под землей в замороженном состоянии от момента погребения до момента раскопок, ДНК внутри него может просуществовать сотни тысяч лет.

Важно разъяснить, что я имею в виду под «полезной» ДНК. Не бывает так, что вчера ДНК представляла собой хорошо сохранившуюся информативную молекулу, а сегодня, по истечении срока годности, рассыпалась в прах. Процесс распада ДНК включает как накопление химических повреждений, так и постепенное разрушение длинных цепочек с образованием все более мелких фрагментов. Когда длина фрагментов уменьшается до менее чем 25–30 пар оснований, мы уже не можем определить, к какому именно участку генома они относятся, и, следовательно, для генетических исследований они становятся бесполезны. Фрагменты ДНК длиной в одно-два спаренных основания могут существовать в течение очень длительного времени даже в крайне неблагоприятной для их выживания среде, однако выделение таких участков никак не поможет нам в сборке по кусочкам генома вымершего животного.

Недавно я участвовала в большой международной коллаборации, занимавшейся секвенированием полного генома древней лошади – такой же лошади, как те, что участвуют в «Кентукки Дерби» в наши дни, но только очень старой. Кость, которую мы использовали, была извлечена из вечной мерзлоты в канадской Арктике. Обнаружив эту кость, мы поняли, что она старая, – очень, очень старая, – и это сильно нас взволновало.

При исследовании древней ДНК критически важно знать возраст обнаруженных костей. Зная, насколько стара каждая кость, можно понять, как изменения размеров популяций и генетического разнообразия связаны с изменениями в окружающей среде. К примеру, лошади вымерли в Северной Америке около 12 тысяч лет назад. Как я уже упоминала в главе 1, существуют две конкурирующие гипотезы, объясняющие вымирание лошадей. Одна предполагает, что на пике последней ледниковой эпохи, около 20 тысяч лет назад, лошадям не хватало пропитания, другая – что их истребили люди, появившиеся в Северной Америке около 14 тысяч лет назад. Знать, что лошади вымерли 12 тысяч лет назад, и знать, почему они вымерли, – это не одно и то же. Чтобы подтвердить одну из двух гипотез, нам нужно выяснить, когда начали сокращаться популяции лошадей. А для этого мы должны установить возраст каждой кости.

Существует несколько способов узнать возраст кости, окаменелости или археологического артефакта. В некоторых условиях, например в пещерах или в местах археологических раскопок, они могут находиться в четко определенных слоях или пластах, где также обнаруживаются другие объекты, возраст которых известен. Это могут быть скопления окаменелостей, обнаруживаемые вместе только в слоях, относящихся к тому или иному временному интервалу, или доисторические орудия труда, использовавшиеся только в один определенный период. К сожалению, в вечной мерзлоте, где обнаруживается большинство интересующих нас лошадиных костей, такие слои встречаются не часто.

Возраст большинства костей, сохранившихся в вечной мерзлоте, определяется с помощью процесса, называемого радиоуглеродным датированием. В основе этого метода лежит определение относительного содержания в останках живого организма двух изотопов углерода – углерода-14 и углерода-12. Эти данные позволяют понять, сколько времени прошло с момента смерти организма. Углерод-14 представляет собой радиоактивный изотоп углерода, образующийся в атмосфере, когда космические лучи сталкиваются с атомами азота. Углерод-12 – это нормальный изотоп углерода. Углерод обоих видов соединяется с кислородом, образуя диоксид углерода, поглощаемый растениями в процессе фотосинтеза. Животные затем поедают эти растения, и содержащийся в растениях углерод проникает в их кости. В любой момент времени соотношение двух видов углерода в атмосфере и внутри организмов, живущих в этой атмосфере, одинаково. Углерод-14 радиоактивен и распадается с известной скоростью, его период полураспада составляет 5700 лет. Поскольку после смерти живые организмы прекращают потреблять углерод, мы можем рассчитать, как давно организм умер, исходя из количества углерода-14, сохранившегося в его останках.

Радиоуглеродное датирование – это эффективный и отличающийся приятной точностью способ оценки возраста костей, обнаруженных в вечной мерзлоте. Но количество углерода-14 в атмосфере очень мало по сравнению с количеством углерода-12 – приблизительно один атом из триллиона, – а период его полураспада очень недолог. Примерно спустя 40 тысяч лет в организме остается слишком мало углерода-14, чтобы его количество можно было измерить точно. Следовательно, радиоуглеродное датирование можно использовать только в течение этого очень короткого промежутка времени.

К счастью, существует другой способ оценить возраст костей, обнаруженных в вечной мерзлоте. При извержении вулканов в атмосферу широким веером выбрасывается облако очень мелкой пыли, часто называемой вулканическим пеплом, или тефрой. Тефра, образующаяся при каждом извержении, имеет уникальный геохимический состав. Как оказалось, геохимики разработали несколько способов определить, когда произошли эти извержения. Эти методы основаны на том, что воздействие высокой температуры «обнуляет» возраст минералов. Следовательно, измерив определенные характеристики минералов, можно узнать, когда произошло извержение вулкана.

Залежи вулканической тефры располагаются на просторах Аляски и Юкона, отмечая извержения, которые происходили на территории, на западе доходящей до Алеутских островов и полуострова Аляска. Когда пепел оседает на землю, вечная мерзлота как будто покрывается белым одеялом. Со временем над слоем вулканического пепла образуются осадочные породы вечной мерзлоты, и теперь он четко отделяет окаменелости, погребенные до извержения вулкана (находящиеся под слоем тефры), от тех, которые появились там после извержения (расположенные над слоем тефры). Этот метод не так точен, как радиоуглеродный анализ, но он позволяет приблизительно определить возраст костей, слишком старых для датирования с использованием радиоактивного углерода. Именно этот метод мы использовали для оценки возраста нашей древней лошадиной кости.

 

«Слишком старый» – это сколько?

 

Мое излюбленное место для полевых работ – это Клондайк, золотоносный район, расположенный сразу за городом Доусон на территории Юкон, Канада. Оказывается, добыча золота – это буквально золотая жила для палеонтологии ледникового периода. Большинство золотодобытчиков на Клондайке используют процесс, называемый разработкой россыпей (ил. 6). Вода, образующаяся при весеннем таянии снегов, собирается в пруды-накопители. После того как все участки вечной мерзлоты, открытые солнцу, растают, воду закачивают насосом в место добычи золота и выливают под давлением на растаявшую грязь. При этом вода смывает всё, кроме сплошных кусков льда. Затем добыча ненадолго прекращается, пока солнце не растопит следующий слой замерзшей грязи. Затем растаявшая грязь вновь смывается водой. Этот процесс повторяется, пока вечная мерзлота не исчезнет, оставляя под собой только золотоносную россыпь.

К большому удивлению старателей, само золото нас не особенно волнует. Но зато нас очень интересуют тысячи костей, извлеченных из земли в процессе смывания слоя вечной мерзлоты (ил. 7–9). Около 80 % таких костей, найденных на Клондайке, принадлежат степным бизонам, около 10 % – лошадям, а остальные – в основном мамонтам, медведям, львам, американским северным оленям, волкам и овцебыкам. Крайне важно, что разработка россыпи проводится медленно и методично, а это означает, что многие из этих костей можно извлечь еще замороженными. Такие кости сохранились идеально.

Мы обнаружили по-настоящему старую лошадиную кость в золотом руднике поблизости от Тисл-Крик. Это место выделялось даже среди золотоносных россыпей Клондайка. Несколькими годами ранее группа геологов под руководством Дуэйна Фрёзе из Альбертского университета обнаружила, что вечная мерзлота в районе Тисл-Крик была очень старой. Мало того, это был самый древний участок вечной мерзлоты из когда-либо обнаруженных. Они узнали об этом, потому что обнаружили там вулканический слой, называемый тефрой «Голд Ран». Эта тефра осела на землю в центральной части Юкона около 700 тысяч лет назад. Итак, мы узнали, что лошадиные кости находились в слое вечной мерзлоты возрастом в 700 тысяч лет, и нам не терпелось выяснить, содержат ли они хоть немного лошадиной ДНК.

Дуэйн обнаружил семь костей, каждая из которых была крупнее, чем кости современных домашних лошадей, в слое вечной мерзлоты, прилежащем слою тефры «Голд Ран». Он проследил, чтобы во время транспортировки с места обнаружения в хранилище кости все время находились в замороженном состоянии. Мы взяли два образца костной ткани от двух из этих лошадиных костей и, к своему удивлению и восторгу, смогли выделить ДНК из обоих. Повторюсь: мы смогли выделить аутентичную ДНК древней лошади из двух костей возрастом в 700 тысяч лет.

Эти фрагменты представляют собой самые древние цепочки ДНК, когда-либо полученные из образцов, возраст которых установлен достаточно точно. Но экстраординарные заявления требуют таких же экстраординарных подтверждений. Настоящие ли результаты мы получили? Думаем, что да. Мы в высшей степени тщательно следили за тем, чтобы образцы хранились в замороженном состоянии и вдали от других образцов или других источников контаминантной ДНК. Фрагменты, которые мы выделили из этих костей, были короткими и очень сильно поврежденными, чего и следует ожидать при работе с древней ДНК. Данные анализа указывают на то, что эти лошади эволюционно были намного древнее тех, которые живут сейчас. К тому же результаты удалось повторить. Мы выделили ДНК этих лошадей в моих лабораториях в Оксфорде и в Университете штата Пенсильвания, а мой коллега Людовик Орландо и его группа в Копенгагенском университете смогли выделить ДНК одной из костей несколько раз. Результаты всех этих экспериментов согласовывались друг с другом как в том, что касалось собственно восстановления последовательностей ДНК, так и в отношении характера повреждений в этих цепочках. В совокупности эти наблюдения подтверждают аутентичность найденной сверхдревней лошадиной ДНК.

К тому моменту как мы закончили секвенирование ДНК из этой кости, у нас образовалось около 12 миллиардов фрагментов. Мы взяли все эти фрагменты и попытались соотнести их с геномом домашней лошади – его последовательность была собрана и опубликована несколькими годами ранее. Около 1 % из наших 12 миллиардов фрагментов соответствовали различным частям генома домашней лошади, указывая на то, что эта крошечная часть ДНК, выделенной из найденной кости, представляла собой ДНК лошади. Остальные 11,9 миллиарда фрагментов соответствовали ДНК растений, грибов, бактерий и других организмов окружающей среды. Процентное соотношение лошадиной ДНК и ДНК окружающей среды приводит в ужас, но все же нам удалось секвенировать геном древнего животного.

Почему ДНК сохранилась в этой кости в течение такого исключительно долгого времени? С уверенностью сказать нельзя. Кость была обнаружена в самом древнем известном нам участке вечной мерзлоты, и, вероятно, она ни разу не оттаяла за те 700 тысяч лет, что прошли с момента ее погребения. Пока мы не обнаружим более древний участок вечной мерзлоты или окаменелости, расположенные в более древних слоях льда, этот срок можно считать предельным временем жизни ДНК в костях.

Такая исключительная сохранность образцов характерна не только для Арктики. В пещерах ДНК также сохраняется в течение значительного времени. К примеру, большинство костей неандертальцев, ДНК которых мы секвенировали, были найдены в пещерах. Не так давно ДНК удалось выделить из костей пещерных медведей возрастом в 300 тысяч лет и гоминин возрастом в 400 тысяч лет, обнаруженных в пещерах на территории Испании. Известно, что стабильность окружающей среды способствует сохранности ДНК, а в пещерах зачастую сохраняется одна и та же температура и влажность, что, возможно, объясняет эти примеры сохранения ДНК в течение исключительно долгого времени.

Но, похоже, что стабильность условий окружающей среды не является абсолютным требованием. Не так давно мы собрали по кусочкам полный, состоящий из 16 000 пар оснований, митохондриальный геном бизона возрастом в 100 тысяч лет, кость которого была найдена на месте древнего озера в Колорадо. Кость принадлежала вымершему виду бизонов, Bison latifrons, размах рогов которого достигал впечатляющих 2,5 метров – в 5 раз больше, чем у современного американского бизона. Кость бизона и ДНК внутри нее каким-то образом сохранились, несмотря на тысячи сезонных переходов от холодной зимы к жаркому лету. ДНК, обнаруженная в этой кости, находилась в ужасном состоянии, но, как ни удивительно, все еще была пригодна для исследования. Захотели бы мы использовать именно эту кость бизона в качестве источника генетического материала, с которого началось бы воскрешение Bison latifrons? Нет, только в случае, если бы у нас совсем не было выбора. Менее 0,1 % ДНК в этой кости принадлежало бизону, средняя длина фрагмента составляла около 30 пар оснований, и цепочки ДНК были сильно повреждены. Но если бы мы располагали только этой костью и действительно хотели вернуть гигантского бизона к жизни, мы смогли бы использовать ее для секвенирования бизоньего генома. Мы смогли бы получать только крошечную часть ДНК бизона за раз, и это стоило бы нам очень дорого. Но, в конечном итоге, нам, вероятно, удалось бы получить почти точную последовательность ДНК.

К счастью, в случае мамонта и странствующего голубя нам не придется полагаться на плохо сохранившиеся кости с крошечным количеством ДНК. Странствующие голуби вымерли всего лишь 100 лет назад, и сотни чучел этих птиц хранятся в музейных коллекциях по всему миру. Хорошо сохранившиеся останки мамонта встречаются в еще большем изобилии. Если мы ограничим себя последними 40 тысячами лет – что соответствует диапазону радиоуглеродного датирования и позволяет нам узнать точный возраст костей, с которыми мы работаем, – в музейных и университетских коллекциях по всему миру можно найти, вероятно, тысячи, если не сотни тысяч, останков мамонтов. Большинство из них были извлечены из вечной мерзлоты, в том числе в районе Клондайка. Над многими из них уже велась работа в рамках проектов по исследованию древней ДНК и даже по секвенированию генома. Однако нам нет нужды ограничивать себя образцами, хранящимися на полках при комнатной температуре, с быстро распадающейся в них ДНК. Все, что нам нужно, чтобы найти очень хорошо сохранившуюся кость мамонта, – это сесть в самолет, затем в вертолет, затем, возможно, на лодку и отправиться в Арктику.

 

 

Глава 4. Создаем клона

 

Когда вы работаете в тундре, никому нет дела до того, что вы фальшиво поете во весь голос, прогуливаясь вдоль извилистой реки. Никто не смеется над пятью слоями одежды, надетыми на вас, и не подшучивает над разнообразием сеток, которыми вы опутали себя в последней обреченной попытке не подпустить комаров к своему телу. Никто и ухом не ведет, когда ваш видавший виды вертолет Ми-8 совершает неожиданную посадку посреди сибирской тундры, чтобы подобрать франкоговорящую пару с пятилетним ребенком и большим красным холодильником.

Всему этому я научилась летом 2008 года, во время того, что я с нежностью вспоминаю как свой самый странный и наименее успешный сезон охоты за костями. Тем летом мы провели несколько недель в маленьком лагере, окруженном озерами, в низинной тундре полуострова Таймыр. Мы охотились на мамонтов.

Руководил экспедицией на Таймыр Бернар Бьюиг, бывалый и в хорошем смысле эксцентричный исследователь Арктики, и причин считать, что мы потерпим неудачу, не было. На протяжении десятилетий Бернар возглавлял компанию «Церполекс» (от франц. CERcles POLaires EXpédition) и руководил сухопутными экспедициями по Сибири и на Северный полюс. Эти экспедиции начинались на его хорошо оборудованной базе в Хатанге, небольшом российском городе, стоящем на реке Хатанге в Красноярском крае. К началу 2000-х Бернар переключился на экспедиции, имеющие более научный характер, и основал при «Церполексе» организацию Mammuthus (лат. «мамонт»), заявленной целью которой было исследование и прославление Арктики и ее многочисленных сокровищ. Однако, как намекает название этой организации, в центре ее особого внимания был поиск мумифицированных останков мамонтов и содействие их исследованию. Образование компании Mammuthus было либо предприимчивым шагом, либо просто очень своевременным, поскольку с начала этого столетия мумии мамонтов и других древних гигантов ледникового периода стали обнаруживаться в вечной мерзлоте Сибири на удивление часто.

Повстречавшись с Бернаром, нельзя было не увериться как в его лидерских качествах, так и в успехе экспедиции. К 2008 году Бернар имел десятки лет опыта работы в сибирской тундре. Он обладал неисчерпаемой энергией и энтузиазмом, был хорошо знаком с трудностями логистики при работе в Сибири (и знал способы обойти эти трудности), а также владел большой коллекцией теплых курток. Что важнее всего, он долго сотрудничал с местным населением, и это некоторым образом объясняет, почему он так часто первым получал доступ к недавно обнаруженным мумиям мамонтов. Все указывало на то, что экспедиция должна увенчаться успехом.

Наше приключение началось в сибирском доме Бернара в Хатанге. Хатанга – необычное место. Это одна из самых северных точек в мире, где живут люди. Хотя население города составляет менее 3,5 тысячи человек, там есть аэропорт, гостиница и музей природы и этнографии, полный экспонатов, связанных с людьми, живущими в этой местности, и ее историей. В Хатанге также есть несколько ресторанов, где подают мясо местных животных, приправленное укропом, и несколько маленьких магазинчиков, где продается морковь с признаками обморожения по цене 8 долларов, полуавтоматические пулеметы и причудливое разнообразие ароматизированной жевательной резинки. Дороги и речные берега усыпаны незнакомыми механизмами, некоторые из них, возможно, все еще работают. Люди там живут где угодно – и в маленьких деревянных хижинах, и в больших многоквартирных домах и даже транспортных контейнерах – тех, которые используются на судах-контейнеровозах для перевозки грузов через океан. Даже дом Бернара частично состоял из транспортных контейнеров, соединенных вместе и, предположительно, хорошо изолированных от внешней среды. В конце концов, город располагается на 71 градусе северной широты, и зимы в Хатанге темные и холодные, со среднемесячной минимальной температурой около –35 ˚C и полным отсутствием солнечного света в течение многих дней в декабре и январе. Правда, мы находились там с июля по август, и температура воздуха колебалась в приемлемых пределах 5–15 ˚C, а солнце светило круглые сутки. Разумеется, вокруг кружило несколько комаров, портя в остальном прекрасную атмосферу. Точнее, несколько сотен комаров.

На кубический сантиметр воздуха.

В нашей экспедиции участвовали Бернар, его жена Сильвия и их двадцатилетний племянник Питу, несколько русских, работавших на Бернара, французская женщина-режиссер и ее бойфренд, а также целое собрание ученых с самыми разнообразными интересами, касающимися животных ледникового периода. Самым старшим ученым в нашей группе был Дэн Фишер, специалист по изучению мамонтов и профессор Мичиганского университета. Дэн – мировой эксперт в своей области: исследуя паттерны роста мамонтовых бивней, он может определить пол, репродуктивную историю, образ жизни и даже причины смерти животного. Дэн тоже измеряет количество стабильных изотопов химических элементов, углерода и азота, накапливавшихся в бивне мамонта по мере его роста. Эти изотопы образуют почти непрерывную запись изменений в рационе мамонта и в окружавшей его среде. С нами также работали Адам Раунтри и Дэвид Фокс, ранее обучавшиеся под руководством Дэна. Наконец, среди нас было двое исследователей, интересующихся ДНК: я и Иэн Барнс, который в то время преподавал в колледже Ройял-Холлоуэй в Лондонском университете, но я познакомилась с ним во времена, когда трудилась над своей диссертацией в Оксфордском университете.

Дэн, Дэвид и Адам мечтали найти бивни, мы же с Иэном надеялись на кости мамонтов. Бивни лучше подходят для изотопного анализа, но в них содержится очень мало ДНК. Нас с Иэном, кроме того, интересовали все животные, обитавшие на Таймыре в периоды оледенения, так что мы не были строго сосредоточены на сборе мамонтовых костей.

По причинам, оставшимся для меня загадкой, и несмотря на обещания, данные Бернару еще до нашего прибытия в Хатангу, вертолета нам пришлось ждать целую неделю. Мы временно поселились у Бернара и, чтобы убить время, занялись исследованием Хатанги. Мы примерили на себя множество теплых курток и противомоскитных приспособлений. Мы бродили по улицам, дразня местных собак и пытаясь разгадать предназначение разнообразных механизмов. Мы устанавливали ловушки для насекомых и определяли виды тех, которые туда попались. Мы просверлили отверстия в нескольких костях из коллекции Бернара для нашей съемочной группы и на благо будущих исследовательских проектов. Пока мы ожидали, Бернар организовывал и был вовлечен в одну за другой встречи с его группой российских ученых и специалистов по логистике. Эти собрания были яркими и волнующими: гигантские карты не помещались на столах, разговоры переходили на повышенный тон, проводились сверки со старыми научными документами, описывающими географические пределы прошлых оледенений, водка лилась в стаканы и строился план будущей экскурсии.

Наконец, вертолет прибыл и настала пора вылетать в поле. Мы собрали еду, горючее и вещи и отправились из дома Бернара прямо в аэропорт. Мы пробрались через контроль безопасности на взлетную полосу и встретились лицом к лицу со своим следующим транспортным средством: всеми любимым вертолетом Ми-8. Около четверти пространства в нем уже занимали два огромных газовых баллона. Пробираясь мимо баллонов, мы забросили внутрь свое походное снаряжение, камеры и осветительные приборы для съемок, две большие надувные лодки и два подвесных мотора мощностью в 250 лошадиных сил каждый, запасы риса и неизвестной сублимированной еды, достаточные, чтобы прокормить двадцать человек в течение шести недель, гигантскую канистру бензина для готовки и водку в объеме, достаточном, чтобы ощущать счастье в течение по меньшей мере суток. В вертолете Ми-8 недоставало около трети окон, предположительно, чтобы на борту было удобнее курить.

Загрузив все свои вещи, мы забрались внутрь и устроились на лавках под окнами, а также сверху на вещах и баллонах с газом. Последним на борт поднялся Паша, пес нашего повара, годовалый сибирский хаски. Паша выражал свои опасения по поводу участия в нашей экспедиции, пытаясь слиться с покрытием взлетной полосы под трапом. Я разделяла Пашины сомнения относительно того, что лучше: быть проглоченным взлетно-посадочной полосой или подняться в небо на Ми-8. Когда стало ясно, что полоса не желает поглощать Пашу, он сбежал. Повар и один из пилотов выбрались наружу, выкурили несколько сигарет, поймали Пашу, подняли его на руках примерно до середины трапа, каким-то образом умудрились упустить его, поймали снова, усмирили в достаточной степени, чтобы дотащить до конца трапа и внести в дверь, и, наконец, мы устроились в кабине. Под радостные возгласы и отчаянный вой Паши мы оторвались от земли и полетели в сторону тундры.

 


Поделиться с друзьями:

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.036 с.