Мутации и новые гены. Можно ли утверждать, что они служат материалом макроэволюции. — КиберПедия 

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Мутации и новые гены. Можно ли утверждать, что они служат материалом макроэволюции.

2017-07-31 217
Мутации и новые гены. Можно ли утверждать, что они служат материалом макроэволюции. 0.00 из 5.00 0 оценок
Заказать работу

МУТАЦИИ И НОВЫЕ ГЕНЫ. МОЖНО ЛИ УТВЕРЖДАТЬ, ЧТО ОНИ СЛУЖАТ МАТЕРИАЛОМ МАКРОЭВОЛЮЦИИ?

 

Mutations and new genes. Whether it is possible to assert that they are a material of macroevolution?

 

А.Н. ЛУННЫЙ

Доктор биологических наук, Москва

[email protected]

 

В сборнике докладов: «Православное осмысление творения мiра». XIII Международные рождественские образовательные чтения. Отдел религиозного образования и катехизации Русской Православной Церкви. Миссионерско-Просветительский Центр «Шестодневъ», Москва, 2005, с. 173-200.

 

ОГЛАВЛЕНИЕ

1. Макроэволюция – основное положение эволюционной теории

2. Геном живых организмов и его мутационные изменения

3. Устойчивость микроорганизмов к антибиотикам: согласно экспериментальным первоисточникам – мутации есть, но новых генов не возникает

4. Современные представления о механизмах возникновения новых генов

5. Заключение

Список литературы.

 

Заключение

Проведен анализ оригинальных экспериментальных работ и обзоров из области молекулярной эволюции на предмет того, что мутации являются материалом для макроэволюции, а генная информация возникает из негенной (некодирующих участков ДНК). Обнаружено, что, применительно к наиболее яркому примеру эволюционных преобразований микроорганизмов – развитию устойчивости к антибиотикам – на настоящий момент в доступной научной литературе отсутствуют факты каких-либо прогрессивных мутаций и возникновения новых генов. Все адаптивные мутации, обусловливающие приспособление к антибактериальным препаратам, оказались деструктивными, как это и указано вкратце, без научной конкретики и примеров, в трудах креационистов.

В трудах молекулярных эволюционистов рассмотрены современные представления о механизмах образования новых генов. Вопрос о том, насколько эти гены и кодируемые ими белки действительно «новые», является отдельной проблемой (которая здесь не рассматривается), хотя на поверхностный взгляд и создается впечатление, что большинство генов и белков, называемых «новыми», являются модификациями и изоформами «старых».

Шесть из семи известных на современном этапе молекулярно-генетических механизмов образования тех новых генов обусловлены модификацией, перегруппировкой, перетасовкой и умножением уже имеющейся генной информации и уже имеющихся кодирующих последовательностей ДНК. Согласно взглядам самих молекулярных генетиков-эволюционистов, главными механизмами являются как раз указанные, а процесс возникновения генов de novo, т.е. «заново», из ранее некодирующих последовательностей – это крайне редкое явление, причем еще более редкое для целых генов, а не для их частей. К 2003 г. включительно автором настоящего обзора обнаружено всего два-три обоснованных экспериментальных примера, для которых имеются основания полагать, что части генов, кодирующих белки, образовались de novo, из последовательностей ДНК, ранее не несущих генной информации. Однако и в этих случаях предполагается происхождение из частей ранее существовавших генов, хотя и из частей некодирующих (интронов).

Возникновение неизмеримо более сложных и бóльших по размеру геномов в процессе прогрессивной макроэволюции (от низших организмов к высшим), сопровождающееся самопроизвольным (хоть и под контролем естественного отбора) увеличением объема генетической информации путем различных модификаций и умножений уже имеющейся, с позиций информатики и даже логики должно представляться невероятным.

 

* * *

Здесь мы закончим сухое реферативное резюме. После всего кажется странным, как могут рассуждать о макроэволюции, да еще спрашивать, почему в ней сомневаются креационисты. Вот из уже цитированной достаточно наукообразно изложенной работы [42]:

«Уместно спросить у креационистов, а что, собственно, надо было бы наблюдать, чтобы они «поверили» в реальность макроэволюции? Непосредственно мы не видим макроэволюцию, ибо она слишком медленна, чтобы какие-либо изменения были зафиксированы за время существования человеческой цивилизации».

Вспомним, что для какой-либо макроэволюции, как утверждается, необходимы десятки и сотни миллионов лет [1], а что касается бактерий, для которых, теоретически, период должен снижаться до наблюдаемого лабораторно, – то они почему-то по природе своей ныне не способны к макроэволюции [42].

Все эти странные вещи в наукообразных терминах и схемах находят себе различного рода объяснения, гипотезы и теории в трудах эволюционистов разного ранга – от академика И.И. Шмальгаузена [65] до создающих пособия по биологии [1]. Объяснить можно все. Однако скажем: исследователь в области экспериментальных дисциплин имеет особый подход к гипотезам и теориям. Нас не удивить и не устрашить фразами, терминами, предположениями, гипотезами и схемами, как бы наукоподобно и внешне стройно они ни были изложены и какой бы профессор или там академик их ни излагал. Придумать из головы можно все, но нам подавай реальные, экспериментальные обоснования, хоть какие-нибудь, хоть косвенные, но корректно полученные и интерпретированные. И чтобы эти обоснования не были бы единичными исключениями в массе прочего, как с теми двумя-тремя генами, что, возможно, частично возникли из интронов. Если же этого нет, а почти всё накопленное косвенное [ так ] свидетельствует об обратном утверждаемому – тогда, уж извините, нам профессора и академики не указ.

Именно подобная история имеет место с эволюционной (конкретно – с макроэволюционной) теорией: масса пособий, трудов, слов и положений, про которые думают, что они от частого повторения становятся истиной. Всему этому учат на уроках биологии, и даже делают фоном компьютерных кино про динозавров.

Но ведь, согласно восточной пословице, сколько ни говори: «Халва!», во рту слаще не станет.

Забывают данную мудрость.

Забывают, что прежде чем пускаться в сложные рассуждения о, хотя и редких, но «прогрессивных мутациях», об образовании «новых генов» и т.п., необходимо ознакомиться хотя бы с имеющимися экспериментальными фактами – а их благодаря прогрессу в области молекулярной биологии и генетики за последние 10-15 лет накопилось не так уж мало.

Впрочем, здесь эволюционисты, благодаря своим периодам «в сотни миллионов лет», занимают беспроигрышную позицию. Строго научно их опровергнуть нельзя: невозможно ни наблюдать, ни опыт соответствующий поставить, поскольку те условия и миллионы лет не смоделируешь. Ну, а то, что почти вся совокупность косвенных данных экспериментов и феноменологических наблюдений из разных дисциплин, если их корректно разобрать используя общепринятую научную методологию, макроэволюционные построения и самопроизвольную прогрессивную эволюцию отвергают – не доказательство, если подходить строго. Эволюционисты очень любят говорить нечто вроде: «Конечно, мы пока еще далеко не все объяснить можем, но это на истинности нашей теории никак не отражается!» (см., например, [42], встречал такое еще множество раз).

Ничего себе не отражается: важных даже косвенных, если корректно подходить, подкреплений ниоткуда нет, а нормальных объяснений и вовсе ожидать нельзя, поскольку теория противоречит установленным законам природы.

Вот, написал я эти строки, а потом еще раз перечитал креационное исследование докторов К. Виолована и А. Лисовского «Проблемы абиогенеза как ключ к пониманию несостоятельности эволюционной гипотезы» [66]. Авторы, углубленно рассматривая детали молекулярной генетики живого, убедительно демонстрируют нам, что и генетический код-то не един в мире живых организмов (а, значит – как они друг от друга произошли-то?), и что простейший живой объект самопроизвольно образоваться и воспроизводиться не способен, и что информация сама по себе не возникнет в хаосе «первичного бульона». И т.д., и т.п. Многие модные молекулярно- и информационно-эволюционные гипотезы в [66] разобраны, которыми неискушенного человека нынешние большие ученые устрашить пытаются. И за что же вы думаете эволюционисты докторов К. Виолована и А. Лисовского в первую очередь критикуют? Догадайтесь с первого раза, а если не можете, то вот цитата:

«На мой взгляд, Ваша работа имеет один очень серьезный недостаток: она акцентирует внимание на тех трудностях объяснения происхождения жизни, которые эволюционисты (как Вы их называете) хорошо понимают.

Специалисты хорошо понимают проблему происхождения генетического кода и механизма трансляции... Резюмируя обсуждение указанного недостатка Вашей работы, можно сказать, что Ваша работа бьет мимо цели: Вы заостряете ту проблему, которая хорошо известна...

Теперь о «потенциальном достоинстве» вашей работы. Я думаю, что то, что Вы заострили проблему происхождения минимального живого организма, прозвучало бы сильно, если бы Вы наметили пути конструктивного решения данной проблемы» [66].

Это автор лекций по биокибернетике В.Г. Редько высказался.

Не знаю, как вам, но мне весьма характерной структура его мышления кажется.

Ведь для обычного исследователя-экспериментатора ничего не остается ни фактически, ни теоретически от теории биогенеза и молекулярной макроэволюции, если все факты, касающиеся особенностей строения и, главное, функционирования геномов и других структур живого, которые доктора К. Виолован и А. Лисовский привели, истинными являются. Ибо тогда самопроизвольное возникновение и «прогрессивное развитие» всего такого законам природы и даже логики отчетливо противоречит.

Но для биокибернетика подобные факты не указ, хоть он их и не отрицает. Мы, эволюционисты, дескать, и сами понимаем, что факты нашим теориям противоречат («трудности у нас тут»). Однако на нашу веру в теории биогенеза и макроэволюции данная конфузия никак повлиять не способна. И лучше бы вы, г-да Виолован и Лисовский, вместо критики своей помогли бы нам такие объяснения придумать, которые бы, с одной стороны, природе не противоречили, а с другой – нашу веру подкрепили.

Не понимает В.Г. Редько, что в статье [66] как раз о том, что подобное совмещение никак невозможно, говорится. Характерно его непонимание.

Просит он докторов Виолована и Лисовского: «Помогите с конструктивным решением».

Как будто указанные доктора Господа Бога заменить способны.

Странная логика. Наверное, как у антиподов античных. Все с ног на голову.

«Там обитают… совсем безголовые (анэнцефалы)…» (Геродот. «История». V в. до н. э.).

При такой логике никому ничего доказать даже научно нельзя (об этом пишет и сам В.Г. Редько: «Ваша работа бьет мимо цели»). У людей вера слепая, мракобесная, схоластическая, хоть и в наукоподобных терминах выражаемая. Тут все бесполезно. Фанатизм. Правда, если признавать абсолютную необходимость в десятках и сотнях миллионов лет для макроэволюции, то это суеверие действительно строго научно опровергнуть невозможно, как и исходный постулат о первичности материи.

Тем более, что они всей структурой и, главное, духом «нового мирового порядка» прямо или косвенно поддерживаются.

Вспоминается, что в XVI-XVII вв. ученые были абсолютно уверены в возможности самозарождения живых существ. Считалось, например, что мыши сами собой возникают из грязного белья и пшеницы. Опыты ставили: завернут в грязное белье пшеницу, кинут в чулан, и, действительно, скоро мыши появляются. Вот как описал этот «эксперимент» исследователь Ван-Гельмонт в начале XVII в. (цитировано по [67]; в сокращении):

«… если вы набьете глиняный кувшин грязным нижним бельем, добавив туда некоторое количество пшеницы (ее можно заменить куском сыра), то приблизительно через двадцать один день закваска, находящаяся в белье, проникает сквозь пшеничную шелуху и превращает пшеницу в мышь. Что замечательно, так это то, что из пшеницы или сыра возникают мыши обоих полов... Но еще более замечательно то, что мыши, возникающие из пшеницы и нижнего белья, являются не детенышами и даже не недоразвитыми копиями нормальных мышей, а уже сразу взрослыми мышами!»

Конечно, теория о самозарождении мышей со временем пришла в противоречие с накопленными фактами. Кто-то, наверное, наконец-то провел корректный опыт – с затыканием в чулане всех дыр, и мыши из белья и пшеницы не появились. Теорию отбросили.

Но мы вполне можем представить себе даже сейчас, как некий большой ученый говорит нам: «Да, мыши действительно возникают из грязного белья и пшеницы – это научно доказанный еще Ван-Гельмонтом факт. Вот только такое редко бывает – один раз в десять тысяч лет, и Ван-Гельмонту просто повезло. А то, что более никакие опыты этот факт не подтверждают, ни о чем не свидетельствует – множество опытов в течение десятков тысяч лет провести надо, и тогда, возможно, получится».

Нечто вроде этого происходит и с теорией макроэволюции. Скажите, можем ли мы с вами со всем аппаратом и всеми данными современной науки строго научно доказать, что мыши из грязного белья и пшеницы зарождаться не способны, если это, как будут утверждать, по прикидкам один раз в десять тысяч лет происходит? Не сможем: сколько бы мы ни ставили разных опытов с отрицательными результатами, тот большой ученый всегда будет утверждать с иронией (вроде как в [42]; см. выше цитату), что ничего не доказано, поскольку мыши всего один раз за очень длительный период времени самозарождаются, если в грязное белье пшеницу поместить.

Теперь представим, как теория о самозарождении мышей в научные труды, а потом и в учебники по биологии попала и стала там аксиомой. И что всех, начиная с детского сада и школы, уверяют в полной ее истинности и в наличии строгих научных обоснований. И говорят, что раз многие имеющие вес профессора и академики в истинности той теории уверены, то и нам ничего не остается, как в самозарождение мышей поверить.

Что вы на это скажете? А скажете, наверное, что здесь лженаука и суеверие, хотя даже академики к сему руку приложили. Почему вы так скажете? Какие у вас будут основания, если априори отсутствуют строго научные опровержения? А такие будут основания, что все накопленные до сих пор данные из биологии и медицины, все законы природы, а также результаты наблюдений многих людей, не позволяют вам поверить в самозарождение мышей из грязного белья и пшеницы.

Если вы в разуме, а в Творца верить все-таки не желаете, то вы скорее, как наш профессор (см. выше раздел 2), поверите в следующее. В то, что тех «самозародившихся» мышей инопланетяне через стенку чулана транспонировали, чтобы вознаградить нас за пшеницу и белье, которые им, инопланетянам, почему-то очень интересными показались.

 

СПИСОК ЛИТЕРАТУРЫ

 

1. Вахненко Д.В., Гарнизоненко Т.С., Колесников С.И. Биология с основами экологии: Учебник для вузов. Ростов н/Д: изд-во «Феникс», 2003. – 512 с.

2. Ичас М. О природе живого: механизмы и смысл: Пер. с англ. М.: Мир, 1994. – 496 с.

3. Виланд К. Камни и кости. Симферополь: Паломник. 2000. – 48 с.

4. Новости медицинской генетики (изложение результатов сиквенса генома человека, опубликованных в: Human genomes, public and private. Nature, 2001, № 6822, p. 745) // Бюлл. Росс. Общ. Мед. Генет. 2001. №№ 2. http://www.medgen.ru/rsmg/bull14.htm.

5. Яблоков А.В., Юсуфов Ф.Г. Эволюционное учение. М.: Высшая школа, 1981. – 344 с.; переиздана в 1989 г.

6. Льюин Б. Гены / Пер. с англ. под ред. Г.П. Георгиева. М.: Мир. 1987. – 544 с.

7. Збарский И.Б. Организация клеточного ядра. М.: Медицина. 1988. – 368 с.

8. Хэм К., Сарфати Дж., Виланд К. Книга ответов. Симферополь: Христианский научно-апологетический центр. 2000. –282 с.

9. Бейкер С. Камень преткновения. Верна ли теория эволюции? М.: Протестант. 1992. – 40 с.

10. Cantrell C. DNA Demands Creation By Design. In: Creation... The Science // http://hauns.com/~DCQu4E5g/DNA.html.

11. Юнкер Р., Шерер З. История происхождения и развития жизни. Основные положения и понятия для уроков биологии. Пер. с нем. СПб.: КАЙРОС, 1997. – 264 с.

12. Davies J. Inactivation of antibiotics and the dissemination of resistance genes // Science. 1994. V. 264. № 5157. P. 375-382.

13. McManus M.C. Mechanisms of bacterial resistance to antimicrobial agents // Am. J. Health Syst. Pharm. 1997. V. 54. № 12. P. 1420-1433.

14. Skurray R.A., Firth N. Molecular evolution of multiply-antibiotic-resistant staphylococci // Ciba Found. Symp. 1997. V. 207. P. 67-83.

15. Ramaswamy S., Musser J.M. Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis: 1998 update // Tuber Lung Dis. 1998. V. 79. № 1. P. 3-29.

16. Maiden M.C. Horizontal genetic exchange, evolution, and spread of antibiotic resistance in bacteria // Clin. Infect. Dis. 1998. V. 27. Suppl. 1. P. S12-S20.

17. Hakenbeck R., Grebe T., Zahner D., Stock J.B. Beta-lactam resistance in Streptococcus pneumoniae: penicillin-binding proteins and non-penicillin-binding proteins // Mol. Microbiol. 1999. V. 33. № 4. P. 673-678.

18. Foster P.L. Adaptive mutation: implications for evolution // Bioessays. 2000. V. 22. № 12. P. 1067-1074.

19. Hashimoto H. Molecular biology of the mechanism of acquisition of antimicrobial-resistance // Nippon Rinsho. 2001. V. 59. № 4. P. 660-665.

20. Davis D.R., McAlpine J.B., Pazoles C.J. et al. Enterococcus faecalis multi-drug resistance transporters: application for antibiotic discovery // J. Mol. Microbiol. Biotechnol. 2001. V. 3. № 2. P. 179-184.

21. Normark B.H., Normark S. Evolution and spread of antibiotic resistance // J. Intern. Med. 2002. V. 252. № 2. P. 91-106.

22. Blazquez J., Oliver A., Gomez-Gomez J.M. Mutation and evolution of antibiotic resistance: antibiotics as promoters of antibiotic resistance? // Curr. Drug Targets. 2002. V. 3. № 4. P. 345-349.

23. Johnston N.J., Mukhtar T.A., Wright G.D. Streptogramin antibiotics: mode of action and resistance // Curr. Drug Targets. 2002. V. 3. № 4. P. 335-344.

24. Poole K. Mechanisms of bacterial biocide and antibiotic resistance // Symp. Ser. Soc. Appl. Microbiol. 2002. V. 31. P. 55S-64S.

25. Levy S.B. Active efflux, a common mechanism for biocide and antibiotic resistance // Symp. Ser. Soc. Appl. Microbiol. 2002. V. 31. P. 65S-71S.

26. Russell A.D. Introduction of biocides into clinical practice and the impact on antibiotic-resistant bacteria // Symp. Ser. Soc. Appl. Microbiol. 2002. V. 31. P. 121S-135S.

27. Hogan D, Kolter R. Why are bacteria refractory to antimicrobials? // Curr. Opin. Microbiol. 2002. V. 5. № 5. P. 472-427.

28. de Souza C.P. Pathogenicity mechanisms of prokaryotic cells: an evolutionary view // Braz. J. Infect. Dis. 2003. V. 7. № 1. P. 23-31.

29. Roberts M.C. Tetracycline therapy: update // Clin. Infect. Dis. 2003. V. 36. № 4. P. 462-467.

30. Megraud F. Antibiotic resistance in Helicobacter pylori infection // Br. Med. Bull. 1998. V. 54. № 1. P. 207-216

31. Hashimoto H. Acquisition of antibiotic-resistance in bacteria by alteration of molecular target, or by the decreased permeability // Nippon Rinsho. 1997. V. 55. № 5. P. 1167-1172.

32. Hotta K. Biochemical and genetic mechanisms for bacteria to acquire aminoglycoside antibiotic resistance // Nippon Rinshoю 1997. V. 55. № 5. P. 1231-1237.

33. Thomas D.E. Arguing against the resolution, on behalf of NMSR. In: Genetics and biochemistry do not admit evolution as science. October 2000 // www.nmsr.org\essay3a.htm.

34. Kinoshita S., Terada T., Taniguchi T. et al. Purification and characterization of 6-aminohexanoic-acid-oligomer hydrolase of Flavobacterium sp. Ki72 // Eur. J. Biochem. 1981. V. 116. № 3. P. 547-551.

35. Ohno S. Birth of a unique enzyme from an alternative reading frame of the preexisted, internally repetitious coding sequence // Proc. Natl. Acad. Sci. U.S.A. 1984. V. 81. № 8. P. 2421-2425.

36. Prijambada I.D., Negoro S., Yomo T., Urabe I. Emergence of nylon oligomer degradation enzymes in Pseudomonas aeruginosa PAO through experimental evolution // Appl. Environ. Microbiol. 1995. V. 61. № 5. P. 2020-2022.

37. Christian Forums is a free, non-profit and non-denominational Christian forum community uniting all Christians as one body // www.christianforums.com\t15898&page_30.htm.

38. Negoro S. Biodegradation of nylon oligomers // Appl Microbiol Biotechnol. 2000. V. 54. № 4. P. 461-466.

39. Deguchi T., Kitaoka Y., Kakezawa M., Nishida T. Purification and characterization of a nylon-degrading enzyme // Appl. Environ. Microbiol. 1998. V. 64. № 4. P. 1366-1371.

40. Long M., Betrán E., Thornton K., Wang W. Origin of new genes: glimpses from young and old // Nature Rev. Genetics. 2003. V. 4. P. 865-875 (есть сетевая версия).

41. Creationism vs Evolution. YouDebate.com Forum. 2004 // http://www.youdebate.com/cgi-bin/scarecrow/post.cgi?forum=3&topic=2161&type=reply.

42. Дзеверин И.И., Пучков П.В., Довгаль И.В. Эмпирические основы теории макроэволюции // http://evolution.atheism.ru/polemics/base.html.

43. Tan H.M. Bacterial catabolic transposons // Appl. Microbiol. Biotechnol. 1999. V. 51. № 1. P. 1-12.

44. Betrán E., Long M. Expansion of genome coding regions by acquisition of new genes // Genetica. 2002.V. 115. P. 65-80.

45. Long M., Deutsch M., Wang W. et al. Origin of new genes: evidence from experimental and computational analyses // Genetica. 2003. V. 118. P. 171-182.

46. Nurminsky D.I., Nurminskaya M.V., De Aguiar D., Hartl DL. Selective sweep of a newly evolved sperm-specific gene in Drosophila // Nature. 1998. V. 396. № 6711. P. 572-575.

47. Ranz J.M., Ponce A.R., Hartl D.L., Nurminsky D. Origin and evolution of a new gene expressed in the Drosophila sperm axoneme // Genetica. 2003. V. 118. № 1-2. P. 233-244.

48. Chen L., DeVries, A.L., Cheng C.H. Convergent evolution of antifreeze glycoproteins in Antarctic notothenioid fish and Arctic cod // Proc. Natl Acad. Sci. USA. 1997. V. 94. № 8. P. 3817-3822.

49. Chen L., DeVries, A.L., Cheng C.H. Evolution of antifreeze glycoprotein gene from a trypsinogen gene in Antarctic notothenioid fish // Proc. Natl Acad. Sci. USA. 1997. V. 94. № 8. P. 3811-3816.

50. Cheng C.H., Chen L. Evolution of an antifreeze glycoprotein // Nature. 1999. V. 401. № 6752. P. 443-444.

51. Cheng C.H., Chen L., Near T.J., Jin Y. Functional antifreeze glycoprotein genes in temperate-water New Zealand nototheniid fish infer an Antarctic evolutionary origin // Mol. Biol. Evol. 2003. V. 20. № 11. P. 1897-1908.

52. Martignetti J.A., Brosius J. Neural BC1 RNA as an evolutionary marker: guinea pig remains a rodent // Proc. Natl. Acad.Sci. U.S.A. 1993. V. 90. № 20. P. 9698-9702.

53. Martignetti J.A., Brosius J. BC200 RNA: a neural RNA polymerase III product encoded by a monomeric Alu element // Proc. Natl. Acad.Sci. U.S.A. 1993. V. 90. № 24. P. 11563-11567.

54. Kim J., Martignetti J.A., Shen M.R. et al. Rodent BC1 RNA gene as a master gene for ID element amplification // Proc. Natl. Acad. Sci. U.S.A. 1994. V. 91. № 9. P. 3607-3611.

55. Хитринская И.Ю., Степанов В.А., Пузырев В.П. Alu -повторы в геноме человека // Мол. биол. 2003. Т. 37. № 3. С. 382-391.

56. Smith D.W. Muir Biology Building. Molecular Biology. Lection 27: Genome Evolution // http://www-biology.ucsd.edu/classes/bimm100.FA00/27.GenomeEvolution.html#C.

57. Snel B., Bork P., Huynen M.A. Genomes in Flux: The Evolution of Archaeal and Proteobacterial Gene Content // Genome Research. 2002. P. 17-25. www.genome.org.

58. Evolution of new genes (схемы) // http://www.botany.utoronto.ca/courses/bio260/Bio260-GenomeEvol_4spp.pdf.

59. Kondrashov F.A., Koonin E.V. Evolution of alternative splicing: deletions, insertions and origin of functional parts of proteins from intron sequences // Trends Genet. 2003. V. 19. № 3. http://tigs.trends.com.

60. Kesse P.K., Gibbs A. Origins of Genes: «Big Bang» or Continuous Creation? // Proc. Natl. Acad. Sci. U.S.A. 1992. V. 89. № 20. P. 9489-9493.

61. Репин В.С. (член-корреспондент РАМН) Геном прочитан – но не понят // НГ Наука. 2001 № 6. http://science.ng.ru/natural/2001-03-21/4_gene.html; см. также http://www.ixs.nm.ru/gen8.htm.

62. Сарфати Дж. Несостоятельность теории эволюции. Симферополь: Христианский научно-апологетический центр. 2001. – 136 с.

63. Священник Тимофей. Две космогонии. М.: Паломник: 1999. – 160 с.

64. Священник Тимофей. Православное мировоззрение и современное естествознание. М.: Паломник: 1998. – 208 с.

65. Шмальгаузен И.И. Пути и закономерности эволюционного процесса. Избранные труды. М.: Наука, 1983. – 360 с.

66. Виолован К., Лисовский А. Проблемы абиогенеза как ключ к пониманию несостоятельности эволюционной гипотезы // Шестоднев / Наука. http://www.creatio.orthodoxy.ru/articles/violovan_abiogenesis.html.

67. Кеньон Д., Стейнман Г. Биохимическое предопределение. Пер. с англ. М.: Мир, 1972. – 336 с.

 

МУТАЦИИ И НОВЫЕ ГЕНЫ. МОЖНО ЛИ УТВЕРЖДАТЬ, ЧТО ОНИ СЛУЖАТ МАТЕРИАЛОМ МАКРОЭВОЛЮЦИИ?

 


Поделиться с друзьями:

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.085 с.