Огненный шар Большого взрыва — КиберПедия 

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Огненный шар Большого взрыва

2017-07-25 179
Огненный шар Большого взрыва 0.00 из 5.00 0 оценок
Заказать работу

 

Самым убедительным доказательством Большого взрыва стало обнаружение реликтового (остаточного) микроволнового излучения. Если бы оно не было найдено, Большой взрыв назвали бы большой фальшивкой и связанную с ним теорию признали бы глубоко ошибочной. Ученые из Принстонского университета Роберт Дикке[129]и Джеймс Пиблс[130]начали активно изучать концепцию Большого взрыва в начале 1960-х годов. При условии, что гипотеза верна, микроволны должны быть доступны для наблюдения. Если физикам удастся обнаружить их, это открытие станет одним из величайших в XX веке, сравнимым с чудом открытия Хабблом расширения Вселенной. Ученые собрали команду, в которую, кроме них, вошли Дэйв Уилкинсон и Питер Ролл, и приступили к конструированию устройства, способного найти нужное доказательство.

Гипотеза ученых была достаточно простой – насколько может быть простой космологическая идея, основанная на теории относительности. Это было развитие первоначального тезиса о Большом взрыве, сформулированного Георгием Гамовым и Ральфом Алфером[131]. В первичной Вселенной, когда космическое пространство было сжато в 30 триллионов раз плотнее, чем сейчас, наполнявшее его вещество (то, что мы видим сегодня в звездах и галактиках) было чрезвычайно плотным и горячим. Вся Вселенная была заполнена плазмой, такой же свирепой, как и та, что находится на поверхности Солнца. Она испускала очень интенсивный свет. Гамов и Алфер называли эту горячую протоплазму «илем».

Гамов утверждал, что на идише это слово означает «бульон». Однако я не нашел его в словаре идиша. Возможно, это какой-то диалект. Алфер писал, что это было давно забытое слово, которое можно было найти в толковом словаре Webster’s New International Dictionary и которое означает «первичную субстанцию, из которой были сформированы все вещи». Я не нашел «илем» в Webster’s Revised Unabridged Dictionary изданий 1828 и 1913 годов. Толковый словарь английского языка Oxford English Dictionary дает одну ссылку на поэму знаменитого средневекового английского философа и поэта Джона Гауэра Confession Amantis («Исповедь влюбленного»), III.91, в которой на средневековом английском сказано: «Всеобщая материя, которая называется “Илем”, весьма особенная».

Возможно, это Гамов и Алфер превратили слово «илем» в новый термин, но известно, что названия «Большой взрыв» они не придумывали. Его автором стал Фред Хойл, видный астроном, который не верил в эту теорию и обозвал ее так, чтобы посмеяться. Видимо, к разочарованию Хойла, Гамов быстро подхватил это название и применил. Еще одним примером чувства юмора Гамова стало то, что при написании в соавторстве с Алфером крупной статьи о Большом взрыве он включил в число ее авторов известного физика Ганса Бете, хотя последний в подготовке статьи не участвовал, не давал разрешения на использование своего имени и даже не подозревал, что он соавтор, пока статья не была опубликована. Позднее Гамов объяснял это шуткой – не смог избежать соблазна назвать авторами статьи Алфера, Бете и Гамова, поскольку эта комбинация так напоминала три первые буквы греческого алфавита: альфу, бету и гамму. Эту работу до сих пор иногда упоминают по буквам: «Статья αβγ».

Гамов был известным популяризатором науки. Оглядываясь назад по мере написания этой работы, я вдруг понял, что его книга «Один, два, три… бесконечность», которую я читал еще подростком, в определенной степени воодушевила меня на написание «Сейчас». Я читал также и книгу Фреда Хойла Frontiers of Astronomy[132](«Границы астрономии»), в которой автор отстаивал свою теорию «стабильного состояния», предложенную в качестве альтернативы Большому взрыву. Хойл утверждал, что расширение Вселенной – иллюзия, материя постоянно создается и разрушается, и Вселенная не меняется. (Будучи еще ребенком, я, конечно, не имел собственного мнения относительно того, кто из них прав.)

Хойл разработал концепцию, которую он называл совершенным (идеальным) космологическим принципом, утверждавшим, что Вселенная не только однородна в пространстве, но и не меняется с течением времени. Теперь в ретроспективе я нахожу особенно интересным то, что для обоснования своей теории Хойл привлек методологический принцип бритвы Оккама, согласно которому простейшая идея и есть самая правильная (или что из всех возможных объяснений наиболее вероятно самое простое). Хойл использовал бритву Оккама, чтобы доказать: его гипотеза лучше теории Большого взрыва. Один важный урок, который мы можем вынести из этой истории: будьте осторожнее с научными принципами. Часто это лишь предположения, не всегда основывающиеся на фактах. Другой урок состоит в том, что соблюдение бритвы Оккама не всегда ведет к истине.

Когда Алфер и Гамов впервые предложили теорию Большого взрыва, еще не было возможности ни подтвердить, ни опровергнуть ее. Но Дикке и его команда нашли решение этой проблемы. По их вычислениям, через полмиллиона лет после Большого взрыва наступил ключевой момент: расширяющееся космическое пространство охладилось до такой степени, что плазма стала прозрачной. Тогда исключительно интенсивный свет, подобный свету Солнца, смог свободно проникнуть в пространство и начал в нем распространяться. Именно этот свет от праисторического огненного шара и хотели обнаружить ученые из Принстона. Они ожидали, что свет может исходить с разных направлений, потому что Большой взрыв был полностью однородным – в соответствии с космологическим принципом. Свет должен был пройти дистанцию в 14 миллиардов световых лет, достигнув нас через 14 миллиардов лет.

Вокруг нашего нынешнего места во Вселенной 14 миллиардов лет назад вещество тоже было сильно разогретым и светящимся, и этот свет уходил от нас в окружающее космическое пространство. Как раз примерно сейчас наш свет достигает самой отдаленной материи, свет которой, наоборот, достигает нас.

В связи с быстрым расширением Вселенной яркое свечение, испущенное так давно, претерпело цветовое смещение. Его источник, та самая далекая горячая материя, стремительно удалялся от нас, а ее свет претерпел допплеровское смещение (по нему радары, работающие на основе эффекта Допплера[133], определяют скорость вашего движения). В нашей системе отсчета это излучение должно иметь не частоту видимого света, а частоту микроволн, подобных тем, что генерируются в вашей микроволновке, только гораздо более слабых.

Когда Дикке, Пиблс, Ролл и Уилкинсон готовили аппаратуру для поисков первичного сигнала, двое исследователей из научно-технической лаборатории корпорации Bell Telephone Арно Пензиас[134]и Роберт Уилсон[135]направили на космос огромную и очень чувствительную антенну, способную улавливать слабейшие микроволны. Их целью было не обнаружение следов Большого взрыва. Наоборот, они ожидали, что не уловят никакого сигнала. Этим ученые хотели доказать, что все поступающее в их приемник – всего лишь собственный электронный шум их аппаратуры. Цель специалистов Bell Telephone состояла в минимизации этого шума.

Пензиас и Уилсон достигли на своем устройстве минимального уровня шума, равнявшегося 3 градусам по Кельвину (они измеряли шум по повышению температуры), но не смогли избавиться от него окончательно. Независимо от того, в какую точку небосвода они направляли свою антенну, аппаратура все равно показывала шум, соответствующий 3 градусам по Кельвину. Исследователи пришли к заключению, что этот шум представляет собой некий сигнал, идущий из космоса. Однако они не имели ни малейшего представления о его природе, происхождении, причинах и т. д.

Действительно, казалось абсурдным, что до Земли доходит сигнал из космоса, однородный по всем направлениям. Во всяком случае, так казалось в то время. Нужно отдать должное Пензиасу и Уилсону: чтобы прийти к настолько невероятному заключению, они продемонстрировали непоколебимую уверенность в своей аппаратуре. Наверное, любые другие экспериментаторы, обнаружившие однородное и равнонаправленное излучение, должны были прийти к выводу, что оно исходит от их устройства.

Пока команда Принстонского университета готовила оборудование, Пиблс публично огласил ее предсказания. Одним из тех, кто слышал его лекцию, был Кен Тернер, который рассказал об этом Бернарду Бурке, а тот, в свою очередь, – Арно Пензиасу. Последний позвонил Дикке. Его команда находилась в комнате по время этого разговора. «Нас обошли», – сказал Дикке коллегам.

Когда Пензиас и Уилсон опубликовали статью с отчетом об эксперименте, они никак не упомянули вопрос о Большом взрыве. Их статья имела совершенно нейтральное название: A Measurement of Excess Antenna Temperature at 4080 Mc/s [megacycles per second] («Измерения дополнительной температуры антенны при 4080 мегациклах в секунду»). Исследователи просто написали: «Возможным толкованием для дополнительной температуры шума может быть объяснение, данное Дикке, Пиблсом, Роллом и Уилкинсоном в их совместной статье от 1965 года». Однако всего через год микроволновое излучение было признано определенным свидетельством того, что Вселенная произошла в результате взрыва. Таким образом, предвидение оправдалось. Были найдены следы Большого взрыва.

В связи с лекцией, прочитанной Пиблсом, и тем, что благодаря ей научная суть теории Большого взрыва достигла ушей Пензиаса, открытие микроволнового излучения было сделано Пензиасом и Уилсоном, а не принстонской командой, которая подтвердила его существование только спустя несколько месяцев. За свою работу Пензиас и Уилсон поделили Нобелевскую премию. Ученые из Принстона этой чести не удостоились, хотя снискали уважение коллег (в частности, мое). Награду следовало бы поделить между Пензиасом, Уилсоном, Дикке и Пиблсом, но статут Нобелевской премии запрещает ее присвоение более чем трем номинантам.

 

В поисках начала времени

 

В 1972 году, вскоре после защиты докторской диссертации в университете Беркли, касающейся физики элементарных частиц, я собирался продолжить занятия по этой теме и начать работу над независимым проектом, который соответствовал моим научным интересам, возможностям и надеждам. Это был первый проект, который я собирался выполнить без своего учителя Луиса Альвареса. Я прочел книгу Пиблса Physical Cosmology[136]и решил попытаться пронаблюдать за микроволновым излучением от Большого взрыва. Я хотел увидеть, какой была Вселенная 14 миллиардов лет назад, и проверить достоверность космологического принципа.

Этот проект в конечном счете материализовался в карту ранней Вселенной, показывающую, какой была она в своем «детском возрасте» – 0,00004 доли от возраста нынешнего. Для сравнения, когда вам 20 лет, то возраст 0,00004 от него составляет ваши первые шесть недель.

Пензиас и Уилсон установили с точностью до 10 %, что микроволны были однородны. Они не нашли анизотропии, то есть отличий в интенсивности излучения при замерах в различных направлениях. Дополнительные эксперименты повысили предел точности до 1 %. При повышении точности до 0,1 % анизотропия должна была обнаруживаться, хотя бы от движения Земли в космосе. Это примерно так же, как вода больше попадает вам на лицо, чем на затылок, если вы бежите под дождем. Точно так же и интенсивность микроволн должна быть больше во встречном по отношению к Земле направлении. А если достичь точности 0,01 %, мы могли бы увидеть остатки раннего сгустка, из которого образовались группы галактик.

В своей книге Пиблс назвал движение Земли по отношению к отдаленным частям Вселенной «дрейф по новому эфиру». Это не было измерение относительно абсолютного пространства: Эйнштейн показал, что это невозможно. Но есть только одна система отсчета, в которой материя Вселенной вокруг вас абсолютно симметрична и однородна, – система отсчета космологического принципа. Это «каноническая СО» теории Большого взрыва, система отсчета Леметра, в которой каждая галактика находится почти в состоянии покоя и Вселенная расширяется благодаря не движению галактик, а расширению пространства между ними.

Чтобы произвести такие измерения, я решил одновременно наблюдать за двумя частотами – той, которая характеризовала микроволновое излучение атмосферы Земли, и той, которая принадлежала сигналам из космоса. Эксперимент следовало проводить на большой высоте – возможно, на вершине горы, но лучше всего на воздушном шаре или самолете. Попробовав шары, я пришел к выводу, что они неудобны (например, часто терпят крушения). Я старался также упростить эксперимент и использовать обычные приборы, работающие при комнатной температуре, а не детекторы шумов, требующие сильного охлаждения. Использование антенн с относительно нормальной температурой предполагало возможность работы с приемной аппаратурой, обладающей лучшими характеристиками теплопроводности, что помогло бы исключить влияние самих приборов на выводы об анизотропии. Таким образом, впервые в жизни я изучал природу теплового потока[137].

К проекту присоединился Джордж Смут[138], физик из лаборатории космических исследований университета Беркли. Директор исследовательского центра Ames Национального аэрокосмического агентства Ганс Марк предложил использовать исследовательский самолет NASA U-2, и мы скомпоновали наши измерительные приборы, чтобы разместить в его кабине. Для улавливания микроволнового излучения я решил применить специальные рупоры. В них должен был использоваться оптический эффект аподизации (действия над оптической системой, приводящие к изменению распределения интенсивности в дифракционном изображении светящейся точки), чтобы ослабить сигналы, поступавшие под слишком широкими углами. Смут по публикациям подобрал подходящую схему, которая должна была сработать. Мы сконструировали несколько приборов с рупорами, и я испытал их в нашей лаборатории. Мне помогал первый докторант Марк Горенштейн, который в итоге защитил на проекте докторскую диссертацию.

Это была долгая и трудная работа, но после нескольких полетов мы выяснили, что излучение оказалось не полностью однородным. Самая яркая часть располагалась к югу от созвездия Льва, а самая темная – на противоположной стороне, в созвездии Рыб. В этих пределах яркость плавно менялась – пропорционально косинусу угла по отношению к созвездию Льва. Это явно подтверждало, что излучение существует из-за движения Земли по отношению к отдаленному веществу межзвездной среды Вселенной.

Из амплитуды этих «космических косинусов» я высчитал скорость Млечного Пути: она приближается к 1 600 000 км/ч. Красивое и впечатляющее число.

Если мы движемся со скоростью 1,6 млн км/ч, может ли наша Галактика находиться в состоянии покоя, как это следует из модели Леметра? А она и не в состоянии покоя. Модель Леметра допускала, что отдельные галактики могут совершать локальные перемещения, которые называются пекулярными движениями [139], например обращения вокруг ближайшей группы галактик. Или, как в случае Млечного Пути, притягиваемые силами гравитации близкой галактики Андромеды. Леметр просто полагал, что такое локальное движение мало по масштабам и осуществляется в случайных направлениях.

 


Поделиться с друзьями:

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.022 с.