Закон Био-Савара-Лапласа и его применение к расчету магнитного поля — КиберПедия 

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Закон Био-Савара-Лапласа и его применение к расчету магнитного поля

2017-07-01 1246
Закон Био-Савара-Лапласа и его применение к расчету магнитного поля 0.00 из 5.00 0 оценок
Заказать работу

Магнитное поле постоянных токов различной формы изучалось французскими учеными Ж. Био (1774–1862) и Ф. Саваром (1791–1841). Результаты этих опытов были обобщены выдающимся французским математиком и физиком П. Лапласом.

Закон Био-Савара-Лапласа для проводника с током , элемент которого создает в некоторой точке (рис. 1) индукцию поля , записывается в виде:

, (1.3)

где – вектор, по модулю равный длине элемента проводника и совпадающий по направлению с током; – радиус-вектор, проведенный из элемента проводника в точку исследуемого поля, – модуль радиуса-вектора ; –магнитная постоянная (); – магнитная проницаемость среды, которая в воздухе и в вакууме равна единице. Направление перпендикулярно и , т. е. перпендикулярно плоскости, в которой они лежат, и совпадает с касательной к линии магнитной индукции. Это направление может быть найдено по правилу нахождения линий магнитной индукции (правилу правого винта): направление враще­ния головки винта дает направление , если поступательное движение винта соответ­ствует направлению тока в элементе.

М одуль вектора определяется выражением

, (1.4)

где – угол между векторами и .

Для магнитного поля, как и для электрического, справедлив принцип суперпозиции: магнитная индукция результирующего поля, создаваемого несколькими токами или движущимися зарядами, равна векторной сумме магнитных индукций складываемых полей, создаваемых каждым током или движущимся зарядом в отдельности:

. (1.5)

Расчет характеристик магнитного поля ( и ) по приведенным формулам в общем случае сложен. Однако если распределение тока имеет определенную сим­метрию, то применение закона Био-Савара-Лапласа совместно с принципом суперпозиции позволяет просто рассчитать конкретные поля. Рассмотрим два примера.

М агнитное поле прямого тока, текущего по тонкому прямому проводу бесконечной длины (рис. 2). В произвольной точке ,удаленной от оси проводника на расстояние , векторы от всех элементов тока имеют одинаковое направление, перпендикулярное плоскости чертежа («к нам»). Поэтому сложение векторов можно заменить сложением их модулей. В качестве переменной интегрирования выберем угол (угол между векторами и ), выразив через него все остальные величины. Из рис. 2 следует:

(радиус дуги CD вследствие малости равен , и угол FDC по этой же причине можно считать прямым). Подставив эти выражения в (1.4), получим, что магнитная индук­ция, создаваемая одним элементом проводника, будет следующая

. (1.6)

Так как угол для всех элементов прямого тока бесконечно длинного изменяется в пределах от 0 до , согласно (1.5) и (1.6) получим:

.

Следовательно, магнитная индукция поля прямого тока бесконечной длины

. (1.7)

Если проводник конечной длины, то меняется от до (рис. 2) и тогда интегрируя (1.6), получим

. (1.8)

Магнитное поле в центре кругового проводника с током. Все элементы кругового проводника с током создают в центре магнитные поля одинакового направления – вдоль нормали от витка. Поэтому сложение век­торов можно заменить сложением их модулей. Так как все элементы проводника перпендикулярны радиусу-вектору () и расстояние всех элементов проводника до центра кругового тока одинаково и равно , то согласно (1.4):

.

Тогда

.

Следовательно, магнитная индукция поля в центре кругового проводника с током имеет вид:

.

 

F Л = q υ B sin α.

Эту силу называют силой Лоренца. Угол α в этом выражении равен углу между скоростью и вектором магнитной индукции Направление силы Лоренца, действующей на положительно заряженную частицу, так же, как и направление силы Ампера, может быть найдено по правилу левой руки или по правилу буравчика. Взаимное расположение векторов , и для положительно заряженной частицы показано на рис. 1.18.1.

Рисунок 1.18.1. Взаимное расположение векторов , и Модуль силы Лоренца численно равен площади параллелограмма, построенного на векторах и помноженной на заряд q

Сила Лоренца направлена перпендикулярно векторам и

При движении заряженной частицы в магнитном поле сила Лоренца работы не совершает. Поэтому модуль вектора скорости при движении частицы не изменяется.

Если заряженная частица движется в однородном магнитном поле под действием силы Лоренца, а ее скорость лежит в плоскости, перпендикулярной вектору то частица будет двигаться по окружности радиуса

Сила Лоренца в этом случае играет роль центростремительной силы (рис. 1.18.2).

 

Выражение для силы Лоренца (114.1) по­зволяет найти ряд закономерностей дви­жения заряженных частиц в магнитном поле. Направление силы Лоренца и на­правление вызываемого ею отклонения за­ряженной частицы в магнитном поле за­висят от знака заряда Q частицы. На этом основано определение знака заряда частиц, движущихся в магнитных полях.

Для вывода общих закономерностей будем считать, что магнитное поле одно­родно и на частицы электрические поля не действуют. Если заряженная частица дви­жется в магнитном поле со скоростью v вдоль линий магнитной индукции, то угол а между векторами v и В ра­вен 0 или p. Тогда по формуле (114.1) сила Лоренца равна нулю, т. е. магнитное поле на частицу не действует и она дви­жется равномерно и прямолинейно.

Если заряженная частица движется в магнитном поле со скоростью v, перпен­дикулярной вектору В, то сила Лоренца F =Q[ vB ] постоянна по модулю и нор­мальна к траектории частицы. Согласно второму закону Ньютона, эта сила создает центростремительное ускорение. Отсюда следует, что частица будет двигаться по окружности, радиус r которой определяет­ся из условия

QvB = mv2/r,

откуда

Период вращения частицы, т. е. вре­мя Т, затрачиваемое ею на один полный оборот,

T = 2nr/v.

Подставив сюда выражение (115.1), по­лучим

т. е. период вращения частицы в однород­ном магнитном поле определяется только величиной, обратной удельному заряду

(Q/m) частицы, и магнитной индукцией поля, но не зависит от ее скорости (при v << с)). На этом основано действие цикли­ческих ускорителей заряженных частиц (см. §116).

Если скорость v заряженной частицы направлена под углом а к вектору В (рис. 170), то ее движение можно пред­ставить в виде суперпозиции: 1) равно­мерного прямолинейного движения вдоль поля со скоростью v||=vcosa; 2) равно­мерного движения со скоростью v = v sina по окружности в плоскости, пер­пендикулярной полю. Радиус окружности определяется формулой (115.1) (в данном случае надо заменить v на v=vsina). В результате сложения обоих движений возникает движение по спирали, ось кото­рой параллельна магнитному полю (рис. 170). Шаг винтовой линии

h=v || T=vT cosa.

Подставив в последнее выражение (115.2), получим

h=2pmv cosa/(BQ).

Направление, в котором закручивается спираль, зависит от знака заряда ча­стицы.

Если скорость v заряженной частицы составляет угол а с направлением векто­ра В неоднородного магнитного поля, ин­дукция которого возрастает в направле­нии движения частицы, то r и h уменьша­ются с ростом В. На этом основана фокусировка заряженных частиц в маг­нитном поле.

В) Частица движется со скоростью , направленной под произвольным острым углом к вектору магнитной индукции .

Разложим вектор на две составляющие:

параллельна вектору ;

перпендикулярна вектору .

Скорость в магнитном поле не изменяется.

Частица одновременно участвует в двух движениях: она равномерно вращается со скоростью по окружности радиуса r и движется поступательно с постоянной скоростью в направлении, перпендикулярном плоскости вращения. Траектория заряженной частицы представляет собой винтовую линию, ось которой совпадает с линией вектора . Шаг винтовой линии (расстояние между витками): .

Для нерелятивистской частицы и ;

Для релятивистской частицы и .

 

 

Циркуляцией вектора В по заданному замкнутому контуру называется интеграл

, (9.1)

где d l – вектор элементарной длины контура, направленной вдоль обхода контура, Вl = В cosα– составляющая вектора В в направлении касательной к контуру (с учетом выбранного направления обхода), α – угол между векторами В и d l.

Закон полного тока для магнитного поля в вакууме (теорема о циркуляции вектора В): циркуляция вектора В по произвольному замкнутому контуру равна произведению магнитной постоянной μ о на алгебраическую сумму токов охватываемых этим контуром:

, (9.2)

где n – число проводников с токами, охватываемых контуром L произвольной формы. Каждый ток учитывается столько раз, сколько раз он охватывается контуром. Положительным считается ток, направление которого связано с направлением обхода по контуру правилом правого винта; ток противоположного направления считается отрицательным.

Например, для системы токов, изображенных на рис.12, .

Выражение (9.2) справедливо только для поля в вакууме, поскольку для поля в веществе

Рис.12. необходимо согласно вышеизложенной гипотезе Ампера, учитывать микротоки (молекулярные токи).

Закон полного тока для магнитного поля в веществе является обобщением вышеприведенного закона с учетом как макротоков, так и микротоков:

, (9.3)

где I и Iо – соответственно алгебраические суммы сил макротоков (токов проводимости) и микротоков, охватываемых заданных контуром. Таким образом, циркуляция вектора магнитной индукции В по замкнутому контуру равна алгебраической сумме токов проводимости и молекулярных токов, охватываемых этим контуром, умноженной на магнитную постоянную. Вектор В, характеризует результирующее поле микро- и макротоков и поэтому линии вектора магнитной индукции не имеют источников и являются замкнутыми.

Как показывает (1.4), магнитное поле макротоков описывается вектором напряженности Н, (В = μ о μ Н). Следовательно, циркуляция вектора напряженности Н магнитного поля равна алгебраической сумме сил токов проводимости, охватываемых этим контуром

. (9.4)

Это выражение представляет собой теорему о циркуляции вектора Н.

Между циркуляции векторов Е и В существует принципиальное различие. Циркуляция вектора Е электростатического поля всегда равна нулю, т.е. электростатическое поле является потенциальным. Циркуляции векторов В и Н магнитного поля нулю не равны. Такое поле называется вихревым, непотенциальным. Следовательно магнитное поле непотенциально.


Поделиться с друзьями:

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.007 с.