Тема 7: Вторичные информационные модели — КиберПедия 

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Тема 7: Вторичные информационные модели

2017-07-01 877
Тема 7: Вторичные информационные модели 0.00 из 5.00 0 оценок
Заказать работу

План:

1. Увеличенные снимки

2. Цифровые модели местности, планы, карты

 

Вторичные информационные модели — результат какого-либо преобразования исходных снимков.

Выделяют два основных вида преобразования: фотографическое и геометри­ческое.

Фотографическое преобразование выполняют с целью упрощения процесса извлечения из снимков семантической информации (увеличение изображения, повышения его контрастности, устранения влияния некоторых шумов и т. п.)

Основная цель геометрического (фотограмметрического) преобразования — получение изображения местно­сти в нужной картографической проекции (преобразованию аэрофотоснимков, полученных в центральной проекции, в изображение местности в ортогональной проекции).

 

Увеличенные снимки

При недостаточной дешифрируемости снимков специалист прибегает к способам повышения дешифрируемос­ти — увеличение изображения, повышение его контраста, умень­шение смаза, фильтрация и др.

По экономическим соображениям съемку выгодно выполнять в масштабе более мелком, чем масштаб картографирования. Предел уменьшения съемочного масштаба определяется возможностями отображения на снимках необходимых объектов местности и обеспечения достаточной точности выполнения метричес­ких действий по ним. В большинстве случаев исходные снимки не обеспечивают достаточной точности, а иногда и возможности, ре­шения определенных задач.

Линейная разрешающая способ­ность зрительного аппарата человека для монокулярного и бино­кулярного зрения определяется значениями 20 и 40 мм-1 со­ответственно. Поэтому реальная разрешающая способность зрительного аппарата уменьшится по крайней мере вдвое. В итоге оказывается, что средняя реальная разрешающая способность зрительного аппа­рата при анализе снимков характеризуется значением 7... 10 мм-1 и меньше.

Современные аэро- и космические снимки благодаря высоко­му качеству объективов съемочных систем, использованию компенсирующих смаз изображения устройств и устойчивых в полете носителей имеют разрешающую способность 60...80 мм-1 и более. Это дает возможность соответственно в восемь—десять раз умень­шить съемочный масштаб. Дешифрируемость таких снимков до­водят до нужного уровня путем их увеличения.

Используется два варианта:

· оптическое

· фотографическое уве­личение.

В оптическом варианте при извлечении из снимков семантической информации используют увеличивающие изображения приспо­собления — лупы, монокуляры и бинокуляры специализирован­ных приборов. Этот вариант можно применять при дешифриро­вании объектов, регистрируемых на снимках внемасштабными условными знаками (колодцы, пункты геодезической опоры и т. п.), а также при наблюдении деталей, используемых в качестве индикаторов объектов, подлежащих нанесению на карту (печных труб при раздельном показе жилых и нежилых сельских построек и т. п.).

При дешифрировании малых по площади объектов, обозначае­мых на снимках границами с условными знаками внутри контура, переход к более дорогому фотографическому увеличению неизбе­жен, если дешифрируют непосредственно снимок. Например, при создании кадастровых карт в масштабе 1:10000 пашни, многолетние насаждения и культурные пастбища на осу­шаемых землях наносят на план, если площадь их на плане пре­вышает 2 мм2. На снимках, размер стороны окажется настолько малым, что размещение внутри него хотя бы одного условного знака невозможно.

Необходимость увеличения снимков обусловливается также обеспечением достаточной точности выполнения метрических ра­бот. Такие работы возникают в основном при полевой инструмен­тальной досъемке не отобразившихся на снимках объектов. Абсо­лютная погрешность фиксации концов измеряемых на снимках отрезков остается примерно постоянной при значительном (до 4...6) увеличении изображения. Дальнейшее увеличение кратности приводит к монотонному возрастанию погрешности. Поэтому относительная погрешность измерения отрезков на оптимально увеличенном снимке сокращается примерно пропорционально кратности увеличения.

Очевидно, точность измерения координат точек по увеличен­ным снимкам с помощью дигитайзера, координатографа и других измерительных устройств будет аналогично повышаться.

2. Цифровые модели местности, планы, карты

Использование новейших типов съемочных систем, переход к компьютерным технологиям и информационным системам по­зволяют получать и хранить полученную информацию о местно­сти в виде цифровых моделей, которые при необходимости могут быть представлены в визуализированном виде (на экране мони­тора или в графическом виде на бумаге). Графические планы и карты стали вторичны по отношению к цифровым моделям мест­ности.

Моделью принято называть результат описания (моделирова­ния) какого-либо объекта, процесса или явления. Модель позво­ляет заменить изучаемый объект или явление его упрощенной формой без потери необходимой информации о нем. Модель не обязана быть абсолютно тождественной самому прообразу, но должна обладать достаточностью. Под достаточностью модели по­нимают такое ее приближение к прообразу, при котором погреш­ности модели не превышают допустимые погрешности измерения параметров прообраза.

Процесс создания и изучения моделей — моделирование — одна из основных категорий теории познания: на идее моделиро­вания, по существу, базируется любой метод научного исследова­ния, как теоретический, так и экспериментальный.

Моделирование может быть семантическим (словесным), ана­логовым и математическим.

В фотограмметрии наиболее широкое распространение полу­чило математическое моделирование, которое описывает изучае­мые объекты или явления в виде:

формул (аналитические модели);

геометрических образов (геометрические модели);

массивов чисел (цифровые модели).

Цифровая модель местности (ЦММ) представляет собой много­мерную цифровую запись информации о местности на магнитном носителе. В цифровых информационных потоках информация хранится поэлементно. Каждый элемент ЦММ имеет п численных характеристик, три из которых — пространственные координаты точки местности, остальные — закодированные числами семанти­ческие характеристики этой точки.

Цифровую модель местности, содержащую информацию о пространственном положении объектов местности, а также семан­тическую информацию об этих объектах, можно представить как совокупность цифровой модели рельефа (ЦМР) и цифровой моде­ли ситуации (ЦМС).

Под ЦМР понимают массив чисел, являющихся простран­ственными координатами точек местности. ЦМС также представ­ляет собой массив чисел, каждым элементом которого являются плановые координаты поворотных точек границ объектов и зако­дированная числами семантическая информация об этих объек­тах. Содержание контуров определяется тематикой модели ситуа­ции — это могут быть топографические элементы, сельскохозяй­ственные угодья, лесотаксационные единицы, почвенные разно­сти и т. п.

Цифровые модели местности являются базой для создания ши­рокого спектра картографической продукции, используемой зем­леустроительными и кадастровыми службами. Это цифровые (электронные) карты, фотопланы, контурные фотопланы, топо­графические фотопланы, ортофотопланы, фотокарты, топографи­ческие планы, ЗБ-изображения.

Цифровая (электронная) карта (ЦК) — это объединение цифро­вой модели рельефа и нескольких цифровых моделей ситуации. Каждая ЦМС представляет собой так называемый слой ЦК. Все слои ЦК связаны между собой посредством ЦМР.

Как правило, в цифровых картах используют географические координаты, поэтому цифровые карты не имеют масштаба. При визуализации цифровая карта может быть представлена в любом

масштабе, но не крупнее того, точность которого соответствует точности исходных данных для создания ЦК.

Цифровые карты содержат значительно больший объем инфор­мации, нежели традиционные графические карты, благодаря по­слойному ее хранению.

Кроме того, цифровые карты физически не устаревают, не вет­шают. Информацию о местности на современном уровне поддер­живают ведением непрерывного мониторинга и картографическо­го дежурства.

Фотоплан — фотографическое одномасштабное изображение местности в заданном, обычно стандартном масштабе, на которое нанесена координатная сетка. Как правило, фотопланы изготав­ливают в рамках трапеций государственной или условной раз­графки или на территорию отдельных землепользовании.

На контурных фотопланах условными знаками показаны необ­ходимые элементы ситуации, некоторые элементы естественного рельефа: бровки балок, оврагов, линии резкого изменения крутиз­ны склонов, а также искусственные формы рельефа.

На топографических фототанах условными знаками показана ситуация и нанесены горизонтали.

После удаления фотоизображения контурные и топографичес­кие фотопланы превращаются соответственно в контурные и то­пографические планы.

Иногда, например при проектировании противоэрозионных мероприятий, целесообразно сохранить фотоизображение, несу­щее максимум информации об эрозионных процессах. В таких случаях на топографических фотопланах число условных знаков уменьшается до необходимого минимума. В результате получается продукция, называемая фотокартой.

Ортофотоплан — фотографическое изображение местности в ортогональной проекции. Первоначально по экономическим со­ображениям ортофотопланы изготавливали преимущественно на горные территории. В настоящее время ортофотопланы получают на различные районы местности с любыми превышениями и фор­мами рельефа.

3D-изображение — это изображение трехмерных объектов на плоскости. Эта новая форма представления пространственной ин­формации находит широкое применение в различных сферах на­учной и производственной деятельности.


Поделиться с друзьями:

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.016 с.