Доказательство роли ядра и цитоплазмы в наследственности. — КиберПедия 

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Доказательство роли ядра и цитоплазмы в наследственности.

2017-07-01 111
Доказательство роли ядра и цитоплазмы в наследственности. 0.00 из 5.00 0 оценок
Заказать работу

Материальная и информационная преемственность между поколениями организмов, размножающихся половым путем, осуществляется в процессе оплодотворения, т. е. слияния мужской и женской половых клеток. Следовательно, носителем наследственной информации является клетка — универсальная единица структурно-функциональной организации живой материи. Это положение распространяется и на организмы с бесполым типом размножения. В ходе эволюции на Земле сформировались два типа клеточной организации — эукариотический и прокариотический. У эукариот протоплазматическая масса клетки чётко разделена на ядро и цитоплазму вследствие того, что ядерный материал отграничен мембраной. У прокариот ядерный материал не обособлен от цитоплазмы. Вирусы представляют собой неклеточную форму живой материи.

Существует много доказательств того, что материальные носители наследственности локализованы почти исключительно в ядре. Приведем три из них. Т. Бовери еще в конце прошлого века в опытах по гибридизации двух видов морских ежей (Psammechinus microtuberculatus и Sphaerichinus granularis), имевших четкие морфологические различия, показал, что особи, развившиеся после оплодотворения энуклеированных (безъядерных) фрагментов яиц Sphaerichinus спермой Psammechinus, развиваются в личинки с анатомическим строением Psammechinus. Автор пришел к выводу, что наследственные признаки у морских ежей определяются только ядром.

К такому же выводу привели и эксперименты с одноклеточной водорослью ацетабулярией, которые провел Р.Геммерлинг. В период вегетативного цикла эта водоросль представляет собой крупную одноядерную клетку, имеющую форму шляпочного гриба или зонтика. Ядро расположено в ризоиде — «корешке». Длина стебелька достигает 6 см. Различные виды ацетабулярии имеют специфическую форму шапочки. Если с помощью микроманипулятора сконструировать трансплантат, состоящий из стебелька незрелого (т. е. еще не развившего шапочку) растения одного вида и ризоидной системы другого, то выросшее растение будет иметь ядро одного вида и часть цитоплазмы другого. Такие растения в зависимости от доли цитоплазмы вида, которому не принадлежит ризоид с ядром, в той или иной мере будут проявлять промежуточные признаки. Однако если удалить такую шапочку, то на ее месте разовьется новая, полностью повторяющая признаки вида, которому принадлежит ядро. Из этих данных можно заключить, что форму шапочки определяет некая субстанция в цитоплазме, которая сама полностью контролируется ядром. Этот вывод позже был подкреплен экспериментом по пересадке изолированных ядер из ризоида одного вида в стебелек другого вида. Подобные опыты в настоящее время проведены на многих объектах и особенно успешно на амфибиях.

Ядро – одно из структурных компонентов эукариотической клетки, содержащий генетическую информацию (ДНК). Осуществляет хранение, передачу и реализацию наследственной информации с обеспечение синтеза белка. Ядро=хроматин (вещество хромосом-ДНК,РНК,белки)+ядрышко+кариоплазма+кариолемма.

 

25. Аллоплоидия. Роль отдаленной гибридизации в видообразовании и селекции. Мейоз у аллополиплоидов.

Аллоплоидия(греч. ploos — кратный и eidos — вид), явление, при котором встречающиеся у особи хромосомные наборы структурно различны и каждый из них представлен 2 (аллодиплоидия) или большее число раз (см. Аллополиплоидия). Гибриды винограда, полученные от скрещивания Vitisvinifera с V. rotundifolia с удвоенным набором хромосом 2л = 78, являются типичными аллоплоидами.

Аллоплоидия возникает в результате отдаленной гибридизации, т. е. при скрещивании разных видов, иногда относящихся даже к разным родам. Следовательно, при аллоплоидии возникают полиплоидные организмы, наборы хромосом которых происходят от двух или более видов. В результате такого совмещения генотипов возникает принципиально новая форма.

Аллополиплоиды — полиплоидные растения, полученные в результате кратного увеличения генома организма, возникшего в результате отдаленной межвидовой или межродовой гибридизации. Полиплоиды, полученные в результате отдаленной гибридизации, то есть от скрещивания организмов, принадлежащих к различным видам, и содержащие два и более набора разных хромосом, называются аллополиплоиды. Например, при слиянии редуцированных гамет, содержащих геном вида А, и редуцированных гамет, содержащих геном вида В, образуются гибридные амфигаплоиды АВ.

Мейоз у аллополиплоидов. Аллополиплоиды первично бесплодны, поскольку из-за отсутствия гомологов невозможна конъюгация хромосом и образование бивалентов в профазе мейоза I. Таким образом, при отдаленной гибридизации возникает мейотический фильтр, препятствующий передаче наследственных задатков в последующие поколения половым путем. Однако, если геномы А и В будут удвоены, то произойдет полиплоидизация с образованием кариотипа ААВВ. Такие организмы называются аллотетраплоиды, или амфидиплоиды (двойные диплоиды). В этом случае фертильность восстанавливается, поскольку теперь хромосомы представлены парными гомологами и могут образовывать нормальные биваленты. Для разных вариантов сочетаний геномов разработана специальная номенклатура, например, организмы с геномной формулой ААВ или АВВ называются сесквиполиплоидами.

Аллополиплоиды широко распространены среди культурных растений. Например, твердыеаллотетраплоидные пшеницы с 2n = 28 имеют геномную формулу ААВВ, а мягкие аллогексаплоидные пшеницы с 2n = 42 – геномную формулу AABBDD. В данном случае хромосомы разных геномов сохраняют сходство между собой, хотя конъюгации между ними маловероятна. Такие хромосомы называются гомеологичными. В природе аллополиплоиды встречаются и среди животных, например, среди некоторых рыб и амфибий.

Аллополиплоиды можно получать искусственным путем. Например, рафанобрассика (редечно-капустный гибрид, синтезированный Г.Д. Карпеченко) была получена путем скрещиванием редьки (2n = 18) и капусты (2n = 18). Хромосомы редьки обозначаются символом R, а хромосомы капусты – символом B. Первоначально полученныйамфигаплоид имел геномную формулу 9R + 9B. Этот организм был бесплодным, поскольку в мейозе образовывалось 18 унивалентов и ни одного бивалента. Однако у этого гибрида некоторая часть гамета оказалась нередуцированными. При слиянии этих гамет был получен амфидиплоид: (9R + 9B) + (9R + 9B) → 18R + 18B. У этого организма каждая хромосома представлена парой гомологов, что обеспечило нормальное образование бивалентов и нормальную сегрегацию хромосом в мейозе: 18R + 18B → (9R + 9B) + (9R + 9B).

«Роль отдаленной гибридизации в видообразовании и селекции» не совсем поняла что от меня требуется и в итоге не нашла


Поделиться с друзьями:

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.016 с.