Исполнительные механизмы управления частотой вращения коленчатого вала — КиберПедия 

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Исполнительные механизмы управления частотой вращения коленчатого вала

2017-06-29 423
Исполнительные механизмы управления частотой вращения коленчатого вала 0.00 из 5.00 0 оценок
Заказать работу

Регулирование частотой вращения коленчатого вала на холостом ходу в ЭСАУ бензиновых двигателей осуществляется подачей дополнительного воздуха в обход дроссельной заслонки. В системах К, L – Jetronic количество добавочного воздуха регулирлвалось заслонкой, управляемой биметаллической пластинкой (рис. 6,27). В последствии стал применяться трехпроводной клапан регулировки холостого хода 9РИС. 6,27). Электродвигатель вращается по или против часовой стрелки в зависимости от подключаемой обмотки, этим управляет БУ, и заслонка поворачивается.

На рисунке 6,28 представлен регулятор холостого хода с шаговым электродвигателем. На разнополярные обмотки 2 и 3 подаются импульсы в определенной последовательности. Винтовая передача преобразует вращение вала в поступательное движение клапана.

Датчики для определения нагрузки на двигатель. Одной из основных величин для расчета цикловой подачи топлива и угла опережения зажигания является нагрузка двигателя. Датчик количества воз­духа. Для определения нагруз­ки двигателя используются следующие чувствительные элементы:

- датчик количества воз­духа;

- нитевой датчик массо­вого расхода воздуха;

- пленочный датчик мас­сового расхода воздуха;

- датчик давления во впускной трубе;

- датчик положения дроссельной заслонки.

Датчик устанавливает­ся между воздушным фильт­ром и дроссельной заслон­кой и производит измерение объема воздуха (м3/ч), по­ступающего в двигатель (рис. 6.29).

Проходящий по­ток воздуха отклоняет за­слонку, противодействуя по­стоянной силе возвратной пружины. Угловое положе­ние заслонки регистрируется потенциометром. Напряже­ние с него передается на блок управления, где произ­водится его сравнение с пи­тающим напряжением по­тенциометра. Это отноше­ние напряжений является мерой для поступающего в двигатель объема воздуха. Определение отношений напряжений в блоке управления исключает влияние изно­са и температурных характеристик сопротивлений потенциометра на точность. Чтобы пульсации проходящего воздуха не вели к колеба­тельным движениям воздушной заслонки, она стабилизируется противовесной заслонкой. С целью учета изменения плотности посту­пающего воздуха при изменении температуры датчик расхода оснащен терморезистором. По сопротивлению терморезистора проводит­ся корректировка показаний датчика. Датчик количества воздуха дол­гое время был составной частью большинства систем Motronic и Jetronic, выпускаемых серийно. Согласно современным требованиям показания датчика расхода воздуха не должны зависеть от атмо­сферного давления, температуры пульсаций и обратного потока воз­духа, возникающих при работе двигателя. Поэтому в настоящее вре­мя датчик количества воздуха с заслонкой заменен более совершен­ными датчиками массового расхода воздуха.

-

 

Датчики массового расхода воздуха. Датчиками массового расхода воздуха называют нитевые или пленочные термоанемо - метрические датчики. Они устанавливаются между воздушным фильтром и дроссельной заслонкой и измеряют массу воздуха, по­ступающего в двигатель (кг/ч). Принцип действия обоих датчиков одинаков. В потоке поступающего воздуха находится электрически нагреваемое тело, которое охлаждается воздушным потоком.

Схема регулирования тока нагрева рассчитана таким образом, что всегда имеется положительная разность температуры измерительно­го тела относительно проходящего воздуха. В данном случае ток на­грева является мерой для массы воздушного потока. При таком ме­тоде измерения производится учет плотности воздуха, так как она также определяет величину теплоотдачи нагреваемого тела. Отсут­ствие в датчике подвижных частей делает его более надежным.

Нитевой датчик массового расхода воздуха. У данного дат­чика нагреваемым элементом является платиновая нить толщиной 70 мкм. Для учета температуры поступающего воздуха производит­ся ее измерение встроенным компенсационным терморезистором. Нагреваемая нить и терморезистор включены в мостовую схему (рис. 6.30 - 6.32). Ток нагрева образует на прецизионном резисторе падение напряжения, пропорциональное массе проходящего воз­духа. С целью предупреждения дрейфа за счет отложения загрязнений на платиновой нити после отключения двигателя осуществ­ляется ее нагрев «прожиг» в течение нескольких секунд до темпе­ратуры, ведущей к испарению или осыпанию отложений и тем са­мым ее очистке.

 

Пленочный датчик массового расхода воздуха. У такого датчика нагреваемым элементом является пленочный платиновый резистор, который находится вместе с другими элементами мостовой схемы на керамической подложке (рис. 6.33 - 6.35).

Температура нагреваемого элемента измеряется терморезисто­ром, который включен в мостовую схему. Раздельное исполнение нагревательного элемента и терморезистора удобно для организа­ции управления. Для измерения температуры воздуха используется компенсационный терморези­стор, также расположенный на подложке, но отделенный канав­кой. Напряжение на нагреваемом элементе является мерой для массы воздушного потока. Это напряжение преобразовывается электронной схемой измерителя в напряжение, совместимое с блоком управления.

Стабильность показаний дат­чика сохраняется без «прожига». В связи с тем, что засорение происходит в основном на пе­редней кромке датчика, установ­ка основных элементов произве­дена по ходу потока так, что за­сорение не оказывает влияния на датчик.

Датчик давления во впуск­ной трубе. Датчик давления во впускной трубе пневматически соединен с последней и замеряет абсолютное давление (кПа). Он изготавливается в виде встраи­ваемого в блок управления эле­мента или как отдельный датчик, который устанавливается вблизи или на самой впускной трубе. При применении встроенного датчика соединение с впускной трубой производится шлангом. Датчик со­стоит из пневматической секции с двумя чувствительными элемен­тами и схемы обработки сигнала, установленных на общей керами­ческой подложке (рис. 6.36).

Чувствительный элемент представляет собой колоколообразную толстопленочную мембрану, которая образует камеру с образцо­вым внутренним давлением.

В зависимости от давления во впускной трубе мембрана проги­бается на определенную глубину. На мембране установлены пьезо - резисторы, проводимость которых меняется от механического напряжения (рис. 6.37).

 

 

       
 
   
 

 

 


Пьезорезисторы включены по мостовой схеме, так что смеще­ние мембраны вызывает напряжение рассогласования моста, кото­рое является мерой давления во впускной трубе.

Блок обработки увеличивает напряжения моста, компенсирует влияние температуры и обеспечивает линейный выходной сигнал, пропорциональный давлению.

 

Датчик положения дроссельной заслонки. Датчик положения дроссельной заслонки определяет угол ее поворота для расчета вспомогательного сигнала о нагрузке двигателя. Он позволяет получать дополнительную информацию для распознавания режимов (холостой ход, частичная и полная нагрузки) и может ис­пользоваться в качестве источника аварийного сигнала при выходе из строя основного датчика нагрузки. Обработка сигнала датчика в БУ позволяет рассчитывать не только положение, но и скорость перемещения педали управления дроссельной заслонкой. В боль­шинстве систем датчик устанавливается на патрубке дроссельной заслонки и находится на одной оси с ней. Потенциометр замеряет угловое положение дроссельной заслонки и передает соотношение напряжений через резисторную схему на блок управления (рис. 6.38 и 6.39). Использование датчика дроссельной заслонки в качестве основного датчика нагрузки предъявляет повышенные требования к его точности, что достигается за счет установки двух потенциометров и усовершенствования опор вращения. Поступаю­щая масса воздуха определяется блоком управления в зависимо­сти от положения дроссельной заслонки и частоты вращения дви­гателя. Температурные колебания воздушной массы учитываются после обработки сигналов температурных датчиков.

В системах с электроуправляемой дроссельной заслонкой дат­чик располагается на педали управления топливоподачей.


Поделиться с друзьями:

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.016 с.