Постоянный электрический ток — КиберПедия 

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Постоянный электрический ток

2017-06-26 200
Постоянный электрический ток 0.00 из 5.00 0 оценок
Заказать работу

Электрический ток – это упорядоченное движение электрически заряженных частиц. Количественными характеристиками тока являются сила тока

и плотность тока

Ток, сила и направление которого не изменяются с течением времени, называется постоянным.

Для возникновения и поддержания электрического тока необходимо: а) наличие свободных электрических зарядов; б) наличие электрического поля; в) присутствие в цепи устройств (источников тока), способных поддерживать разность потенциалов за счет работы сторонних сил.

ЭДС – физическая скалярная величина, определяемая работой сторонних сил при перемещении единичного положительного заряда:

Напряжение на участке цепи – физическая скалярная величина, определяемая работой суммарного поля кулоновских и сторонних сил при перемещении единичного положительного заряда на данном участке:

Напряжение на концах участка цепи равно разности потенциалов, если участок не содержит источника тока (), т.е. является однородным.

Электрическое сопротивление линейных металлических проводников зависит от материала, длины и площади поперечного сечения:

С увеличением температуры сопротивление таких проводников увеличивается:

Проводники в электрической цепи могут соединяться последовательно и параллельно:

Соединение Последовательное Параллельное
Постоянный параметр цепи
Суммируемая величина
Общее сопротивление цепи
Общее сопротивление цепи из n одинаковых проводников

 

Закон Ома для однородного участка цепи

Закон Ома в дифференциальной форме связывает плотность тока в любой точке проводника с напряженностью электрического поля в той же точке:

Участок цепи, содержащий источник тока, называется неоднородным. Закон Ома для неоднородного участка цепи (закон Ома в интегральной форме)

В зависимости от конфигурации участка цепи или режима из этого закона получаем:

 

  Источник тока отсутствует: Закон Ома для неоднородного участка цепи
  Цепь замкнута: Закон Ома для замкнутой цепи
  Режим холостого хода цепи: ЭДС источника в разомкнутой цепи равна разности потенциалов на его зажимах

 

Количество теплоты, которое выделяется в проводнике при протекании электрического тока, определяется законом Джоуля-Ленца:

Закон Джоуля-Ленца в дифференциальной форме связывает удельную тепловую мощность тока с напряженностью электрического тока:

Мощность электрического тока – физическая величина, определяемой работой, совершенной током за единицу времени:

Одним из методов расчета разветвленных электрических цепей является расчет с использованием правил Кирхгофа.

Первое правило Кирхгофа: алгебраическая сумма сил токов в узле электрической цепи равна нулю, т.е.

Второе правило Кирхгофа: в любом замкнутом контуре электрической цепи алгебраическая сумма ЭДС источников равна алгебраической сумме падений напряжений на отдельных участка этого контура, т.е.

Магнитное поле

Взаимодействие между проводниками с током, т.е. взаимодействие между движущимися электрическими зарядами, осуществляется посредством особой формы материи – магнитного поля. Магнитное поле, как и электрическое, является одной из сторон единого электромагнитного поля.

Основной характеристикой магнитного поля является вектор магнитной индукции . Магнитная индукция в данной точке однородного магнитного поля определяется максимальным вращающим моментом, действующим на рамку с единичным магнитным моментом, когда нормаль к рамке перпендикулярна направлению поля:

Магнитное поле изображается с помощью линий магнитной индукции. Линии магнитной индукции всегда замкнуты и охватывают проводник с током. Поля с замкнутыми силовыми линиями называют вихревыми. Направление силовых линий магнитного поля определяется по правилу буравчика.

Вектор характеризует результирующее магнитное поле, создаваемое всеми макро- и микротоками. Магнитное поле макротоков описывается вектором напряженности . В случае однородной изотропной среды

.

Магнитная индукция поля в некоторой точке А, создаваемого элементом проводника с током I определяется законом Био-Савара-Лапласа

 

где - радиус-вектор, проведенный из элемента проводника в точку А.

Магнитная индукция результирующего поля, создаваемого несколькими токами или движущимися зарядами, равна векторной сумме магнитных индукций полей, создаваемых каждым током или движущимся зарядом в отдельности (принцип суперпозиции магнитных полей):

На элемент проводника с током I, помещенный в магнитное поле, действует со стороны поля сила, которая согласно закону Ампера, равна:

где - угол между и . Направление силы Ампера определяется по правилу левой руки.

На движущуюся заряженную частицу в магнитном поле действует сила Лоренца

где - угол между и . Направление силы Лоренца определяется по правилу левой руки. Магнитное поле действует только на движущиеся в нем заряды.

На движущуюся заряженную частицу одновременно в электрическом и магнитном полях действует сила (формула Лоренца)

Электрическое поле изменяет скорость, а следовательно, кинетическую энергию частицы; магнитное поле изменяет только направление ее движения.

Циркуляция вектора по произвольному замкнутому контуру в вакууме равна произведению магнитной постоянной на алгебраическую сумму токов, охватываемых этим контуром:

где n – число проводников с токами, охватываемых контуром L произвольной формы. Циркуляция вектора электростатического поля всегда равна нулю, т.е. электростатическое поле является потенциальным.

Циркуляция вектора магнитного поля не равна нулю, такое поле называется вихревым.

Поток вектора магнитной индукции сквозь произвольную замкнутую поверхность равен нулю (теорема Гаусса для поля ):

Эта теорема отражает факт отсутствия в природе магнитных зарядов, вследствие чего линии магнитной индукции не имеют ни начала, ни конца и являются замкнутыми.

Все вещества в магнитном поле намагничиваются, т.е. создают свое магнитное поле. Величина, показывающая, во сколько раз магнитная индукция в среде больше или меньше, чем в вакууме, называется магнитной проницаемостью:

По значению магнитной проницаемости различают диамагнетики (), парамагнетики () и ферромагнетики (). У ферромагнитных материалов зависит от внешнего магнитного поля.

Электромагнитная индукция

Явление возникновения ЭДС в замкнутом проводящем контуре, находящемся в переменном магнитном поле или движущемся в постоянном магнитном поле, называется электромагнитной индукцией.

Согласно закону электромагнитной индукции ЭДС индукции в замкнутом проводящем контуре численно равна и противоположна по знаку скорости изменения магнитного потока сквозь поверхность, ограниченную этим контуром:

Знак минус отражает правило Ленца: при всяком изменении магнитного потока сквозь замкнутый проводящий контур в последнем возникает индукционный ток такого направления, что его магнитное поле противодействует изменению внешнего магнитного потока.

Сущность явления электромагнитной индукции заключается не столько в появлении индукционного тока, сколько в возникновении вихревого электрического поля. Вихревое электрическое поле порождается переменным магнитным полем. В отличие от электростатического поля вихревое электрическое поле является непотенциальным, его силовые линии всегда замкнуты, подобно силовым линиям магнитного поля.

Частным случаем явления электромагнитной индукции является самоиндукция. Самоиндукция – это возникновение ЭДС в проводящем контуре при изменении в нем силы тока:

где L – индуктивность (коэффициент самоиндукции), зависящая от геометрической формы, размеров контура и магнитных свойств среды, в которой он находится.

Сравнивая выражения

и

для энергии электрического и магнитного полей с потенциальной и кинетической энергией

и ,

можно провести аналогию между электромагнитными и механическими явлениями. Очевидно, что для магнитного поля индуктивность аналогична массе тела. Таким образом, индуктивность является мерой электрической инертности контура по отношению к изменению в нем тока.

Явление электромагнитной индукции и его частные случаи широко применяются в электротехнике. Для преобразования механической энергии в энергию электрического тока используются синхронные генераторы. Для повышения или понижения напряжения переменного тока применяются трансформаторы. Использование трансформаторов позволяет экономично передавать электроэнергию от электрических станций к узлам потребления.

Согласно гипотезе Максвелла, всякое переменное магнитное поле возбуждает в окружающем пространстве электрическое поле, которое и является причиной возникновения индукционного тока в контуре.

Электрическое поле , возбуждаемое переменным магнитным полем, как и само магнитное поле, является вихревым.

По Максвеллу, должна иметь место симметрия во взаимозависимости электрических и магнитных полей: всякое изменение электрического поля должно вызывать появление в окружающем пространстве вихревого магнитного поля.

Для установления количественных соотношений между изменяющимся электрическим полем и возбуждаемым им магнитным полем, Максвеллом введено понятие тока смещения. Току смещения Максвелл приписал способность создавать в окружающем пространстве магнитное поле.

Полная система уравнений Максвелла в интегральной форме

.

Величины, входящие в эти уравнения, не являются независимыми и связаны между собой соотношениями

Полная система уравнений Максвелла в дифференциальной форме

Уравнения Максвелла отражают тот факт, что источниками электрического поля могут быть либо электрические заряды, либо изменяющиеся во времени магнитные поля. Магнитные поля могут возбуждаться либо движущимися электрическими зарядами (электрическими токами), либо переменными электрическими полями.

Уравнения Максвелла не обладают симметрией относительно электрического и магнитного полей. Это связано с тем, что в природе существуют электрические заряды, но нет зарядов магнитных.

Электрическое и магнитное поля неразрывно связаны друг с другом и образуют единое электромагнитное поле.


Поделиться с друзьями:

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.051 с.