Как появилась Солнечная система? — КиберПедия 

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Как появилась Солнечная система?

2017-06-19 291
Как появилась Солнечная система? 0.00 из 5.00 0 оценок
Заказать работу

 

Всего четыре столетия назад поиски ответа на этот вопрос казались безнадежными. Было открыто местоположение важнейших объектов, видимых невооруженным глазом: Солнца, Луны, Меркурия, Венеры, Марса, Сатурна и Юпитера. Работа Николая Коперника, Тихо Браге, Иоганна Кеплера и других астрономов также позволила разобраться в движении этих объектов. Оказалось, что Солнечная система напоминает отлаженный часовой механизм. Не было признаков того, что он в некоторый момент был запущен и однажды остановится. Но действительно ли он вечный? Если нет, откуда он появился? Насчет этого люди оставались в неведении.

В искусственных часовых механизмах, создававшихся в то время на продажу, законы, управляющие движением зубчатых колес, пружин и других деталей, были вполне ясны и позволяли рассчитать их поведение в будущем и в прошлом. Можно было предсказать, что часы продолжат тикать с постоянной частотой, а также что они в конце концов остановятся из-за трения, если их не завести. Осмотрев их, можно было, скажем, узнать, что их заводили в прошлом месяце. Существуют ли аналогичные точные законы, описывающие и объясняющие движение небесных тел, со своими подобными трению эффектами, которые постепенно изменяют Солнечную систему и могут указать, когда и как она образовалась?

Казалось, что ответ на этот вопрос – твердое «нет». Здесь, на Земле, мы добились прочного понимания того, как движутся в пространстве предметы – от брошенного камня до валуна, запущенного катапультой, или пушечного ядра. Однако законы, управляющие небесными телами, казались отличными от законов, управляющих объектами здесь, на Земле. Если Луна подобна гигантскому камню, то почему она не падает, как обычные камни? Классический ответ состоял в том, что Луна – это небесное тело, а небесные тела подчиняются иным законам. Скажем, она не подвержена земному притяжению и поэтому не падает. Некоторые шли дальше и предлагали следующее объяснение: небесные объекты ведут себя так, потому что они идеальны. Они имеют идеальную сферическую форму, поскольку именно сфера – идеальная фигура. Они движутся по круговым орбитам, поскольку окружность тоже идеальна. А падение стало бы столь неидеальным событием, насколько это вообще возможно. На Земле несовершенство повсеместно: трение замедляет движение, огонь сжигает, люди – смертны. В небесах, напротив, движение кажется не подверженным трению, Солнце не прогорает, и вообще нет никаких признаков конца.

Но эта безупречная репутация небес не выдержала испытания. Анализируя измерения Тихо Браге, Иоганн Кеплер установил, что планеты движутся не по окружностям, а по эллипсам, которые представляют собой вытянутые, а значит, не столь совершенные модификации окружностей. В свои телескопы Галилей увидел, что совершенство Солнца нарушается безобразными черными пятнами, а Луна – это не гладкая сфера, она покрыта горами и гигантскими кратерами. Почему же она не падает?

В конце концов на этот вопрос ответил Исаак Ньютон. Он выдвинул гипотезу насколько простую, настолько и радикальную: небесные тела подчиняются тем же законам, что и объекты на Земле. Да, конечно, Луна не падает, как брошенный камень, – но что если обычный камень тоже можно бросить так, чтобы он не падал? Ньютон знал, что камни падают наземь, а не улетают вверх, к Солнцу, и связал это с большей удаленностью Солнца и с тем, что гравитационное притяжение объекта ослабевает с расстоянием. Так можно ли метнуть камень вверх так, чтобы он ускользнул от земного притяжения прежде, чем тому хватит времени, чтобы поменять направление его движения на обратное? Сам Ньютон не мог этого сделать, но он понял, что гипотетическая суперпушка справилась бы с этим, придав камню достаточную скорость. Это значит, что судьба запущенного по горизонтали ядра зависит от его скорости (рис. 3.1): оно врежется в землю, только если его скорость меньше некоей магической величины. Если стрелять ядрами, придавая им все большую скорость, они, прежде чем упасть, будут пролетать все дальше, пока не достигнут скорости, при которой они будут сохранять высоту над Землей постоянной, не падая, а обращаясь вокруг Земли по окружности, – как Луна! Зная силу притяжения у земной поверхности из экспериментов с падающими камнями, яблоками и т. д., Ньютон смог вычислить магическую скорость: она составила колоссальные 7,9 км/с. Предположив, что Луна подчиняется тем же законам, что и пушечное ядро, ученый рассчитал скорость, необходимую ей, чтобы удерживаться на круговой орбите. Единственное, чего не хватало Ньютону – правила, позволяющего понять, насколько слабее земное притяжение в окрестностях Луны. Более того, поскольку Луна затрачивает один месяц на прохождение окружности, длину который вычислил Аристарх, Ньютон уже знал ее скорость: около 1 км/с, как у пули из автомата M16. И тут он сделал замечательное открытие: если предположить, что сила гравитации ослабевает обратно пропорционально квадрату расстояния от центра Земли, то скорость, которая позволяет Луне двигаться по круговой орбите, точно совпадает с ее измеренной скоростью! Ньютон открыл закон гравитации и обнаружил, что он универсален, то есть применим не только здесь, на Земле, но и в небесах.

 

Рис. 3.1. Пушечное ядро (г), выпущенное со скоростью более 11,2 км/с, улетает от Земли и никогда не возвращается (если пренебречь сопротивлением воздуха). При чуть меньшей скорости (в) оно выходит на эллиптическую орбиту вокруг Земли. Если выстрелить горизонтально со скоростью 7,9 км/с (б), орбита ядра будет идеальной окружностью, а если стрелять с меньшей скоростью (а), оно в конце концов упадет на Землю.

 

Внезапно все элементы головоломки встали на свои места. Ньютон, применяя закон тяготения вкупе с математическими законами движения, которые он сформулировал ранее, смог объяснить движение не только Луны, но и планет вокруг Солнца. Он даже сумел математически доказать, что в общем случае орбиты являются эллипсами, а не окружностями. Кеплер считал это обстоятельство необъяснимым.

Как и большинство великих прорывов в физике, законы Ньютона дали ответ на гораздо большее число вопросов, чем те, которые привели к их открытию. Например, они объяснили приливы: гравитационное притяжение Луны и Солнца сильнее действует на морские воды, которые ближе к ним, заставляя воду плескаться по мере вращения Земли. Законы Ньютона также показывают, что общее количество энергии сохраняется, так что если где-нибудь появилась энергия, она не могла появиться из ниоткуда, а должна была поступить откуда-нибудь. Приливы растрачивают массу энергии (часть ее можно собрать с помощью приливных электростанций), но откуда берется вся эта энергия? Большей частью из вращения Земли, которое замедляется трением: если вы иногда чувствуете, что вам не хватает времени в сутках, просто подождите 200 млн лет, и тогда день удлинится до 25 часов!

Следовательно, трение воздействует даже на движение планет, и это отменяет идею вечности Солнечной системы. В прошлом Земля должна была вращаться быстрее, и можно рассчитать, что система Земля – Луна не старше 4–5 млрд лет: в противном случае Земля должна была бы в прошлом вращаться настолько быстро, что центробежные силы разорвали бы ее на части. Вот, наконец, и первый намек на происхождение Солнечной системы: у нас есть оценка времени совершения преступления!

Ньютоновский прорыв подтолкнул человеческий ум к покорению космоса: он показал, что мы можем сначала открывать физические законы, производя эксперименты здесь, на Земле, а затем экстраполировать эти законы для объяснения того, что происходит в небесах. Хотя Ньютон сначала применил этот подход только к движению и гравитации, идея распространялась со скоростью степного пожара, и со временем ее стали применять к свету, газам, жидкостям, твердым телам, электричеству и магнетизму. Люди экстраполировали свои открытия не только на макромир, на космос, но и на микромир, обнаруживая, что многие свойства газов и других веществ можно объяснить, применяя к атомам, из которых те состоят, ньютоновские законы движения. Научная революция началась. Она приблизила и Промышленную революцию, и информационную эру. Прогресс, в свою очередь, позволил построить мощные компьютеры, которые помогают науке развиваться, решая физические уравнения и находя ответы на многие интересные вопросы, прежде ставившие нас в тупик.

Законы физики можно применять по-разному. Часто мы хотим применять имеющиеся знания для предсказания будущего, как при прогнозировании погоды. Однако уравнения точно так же можно решать и в обратную сторону, применяя современные знания, чтобы пролить свет на прошлое, как при реконструкции затмения, которое Колумб наблюдал на Ямайке. Третий способ состоит в том, чтобы вообразить гипотетическую ситуацию и применить физические уравнения для расчета того, как она будет изменяться с течением времени, – так, например, при моделировании запуска ракеты к Марсу определяется, достигнет ли она намеченной цели. Этот третий подход дал новые ключи к загадке происхождения Солнечной системы.

Представьте себе огромное газовое облако в открытом космосе: что с ним произойдет с течением времени? Законы физики предсказывают схватку между двумя силами, которые определяют его судьбу: гравитация будет пытаться сжать его, а давление будет стремиться его рассеять. Если гравитация начинает брать верх, сжимая облако, то оно будет нагреваться (мой велосипедный насос по той же причине при использовании нагревается), что, в свою очередь, повысит давление, препятствующее дальнейшему нарастанию гравитации. Облако может долгое время оставаться стабильным – когда гравитация и давление уравновешивают друг друга, – но это непростое перемирие в конце концов нарушается. Нагретое газовое облако светится, излучая часть тепловой энергии, поддерживающей в нем давление. Это позволяет гравитации сжать облако сильнее – и т. д. Запрограммировав в компьютерах законы гравитации и физики газов, можно во всех деталях смоделировать эту гипотетическую битву. В конце концов центральная часть облака станет настолько горячей и плотной, что превратится в термоядерный реактор: атомы водорода будут сливаться в атомы гелия, поскольку мощная гравитация не позволит им разлететься. Так рождается звезда. Внешние части образующейся звезды уже достаточно горячи, чтобы ярко светиться, и их излучение начинает выдувать прочь остатки газового облака, делая новорожденную звезду видимой для наших телескопов.

Перемотка. Повторное воспроизведение. В процессе постепенного сжатия газового облака любое, даже самое слабое его вращение ускоряется, как это происходит с фигуристкой, которая начинает крутиться быстрее, когда прижимает руки к телу. Центробежные силы, вызванные ускоряющимся вращением, мешают гравитации сжать газовое облако в точку. Вместо этого она придает ему форму, напоминающую пиццу – так пекарь по соседству с моей начальной школой раскручивал тесто для пиццы, чтобы придать ему форму диска. Основные ингредиенты всех космических «пицц» – водород и гелий, но если среди них также находится место более тяжелым атомам вроде углерода, кислорода и кремния, то пока в центре газовой «пиццы» формируется звезда, ее внешние части могут скомкаться в несколько холодных объектов – планет. Они станут видны, как только новорожденная звезда сдует остатки «теста». Поскольку все вращение (угловой момент) связано с вращением исходного облака, все планеты Солнечной системы обращаются вокруг Солнца в одном направлении (против часовой стрелки, если смотреть со стороны Северного полюса), и в том же направлении примерно за месяц поворачивается вокруг своей оси само Солнце.

Это объяснение происхождения Солнечной системы поддерживается сегодня не только теоретическими расчетами, но и телескопическими наблюдениями множества других планетных систем, «пойманных с поличным» на различных стадиях процесса рождения. Наша Галактика содержит огромное число гигантских молекулярных облаков – газовых облаков, содержащих молекулы, помогающих им рассеивать тепло, охлаждаться и сжиматься. В некоторых случаях мы наблюдаем совсем юные звезды, окруженные пиццеобразными газовыми протопланетными дисками, еще почти нетронутыми. Недавнее открытие множества планетных систем вокруг других звезд принесло астрономам массу новых данных, позволяющих улучшить понимание происхождения Солнечной системы.

Если именно такой процесс сопровождал рождение Солнечной системы, то когда именно он имел место? Еще в начале прошлого столетия было широко распространено мнение, что Солнце образовалась всего 20 млн лет назад, поскольку за большее время потеря энергии в форме излучения привела бы к гравитационному сжатию Солнца до гораздо меньших размеров, чем мы наблюдаем. Аналогично было подсчитано, что если подождать значительно дольше, рассеялась бы и большая часть внутреннего тепла Земли, ответственного за вулканические извержения и геотермальные источники.

Источник солнечного тепла оставался загадкой до 30-х годов, когда ученые открыли термоядерные реакции. Но еще прежде того, благодаря открытию в 1896 году радиоактивности, были опровергнуты бытовавшие представления о возрасте Земли. Появился замечательный новый метод его уточнения. Атомы самого распространенного изотопа урана спонтанно распадаются на торий и другие, более легкие, элементы, с такой скоростью, что половина их разрушается за 4,47 млрд лет. Радиоактивный распад уже миллиарды лет производит достаточно тепла для поддержания земного ядра в разогретом состоянии, и это объясняет, каким образом наша планета остается теплой, несмотря на то, что она гораздо старше 20 млн лет. Мало того, измеряя долю распавшихся атомов урана в горных породах, можно определить возраст этих пород. Так было показано, что некоторые образцы, найденные на хребте Джек-Хиллс в Западной Австралии, имеют возраст более 4,404 млрд лет. Рекордный для метеоритов возраст составляет 4,56 млрд лет. Это подтверждает, что и наша планета, и остальная Солнечная система образовались около 4,5 млрд лет назад – в полном согласии с более грубыми оценками, основанными на приливном торможении.

Таким образом, применение законов физики дало людям качественный и количественный ответ на один из главных вопросов наших предков: как и когда возникла Солнечная система?

 

Как появились галактики?

 

Итак, мы отодвинули границу нашего знания на 4,5 млрд лет в прошлое. Тогда Солнечная система образовалась в результате гравитационного коллапса гигантского молекулярного облака. Но одноклассник моего сына Филиппа спрашивал: откуда взялось это гигантское молекулярное облако?

 

Образование Галактики

Вооруженные телескопами, карандашами и компьютерами астрономы нашли убедительный ответ и на эту загадку, хотя ряд важных пробелов еще предстоит восполнить. По сути, схватка гравитации и давления, в ходе которой сформировалась пиццеобразная Солнечная система, повторяется в гораздо большем масштабе: сжимается куда более крупная заполненная газом область совокупной массой в миллионы или даже триллионы масс Солнца. Такой коллапс не приводит к образованию увеличенной версии Солнечной системы с мегазвездой, окруженной мегапланетами. Вместо этого происходит фрагментация на огромное число газовых облаков меньшего размера, из которых образуются отдельные планетные системы: так рождается галактика. Солнечная система – одна из сотен миллиардов в одной из этих пиццеобразных галактик, которая называется Млечным Путем. Мы находимся примерно на полпути от его центра (рис. 2.2), вокруг которого совершаем оборот за пару сотен миллионов лет.

Иногда галактики сталкиваются друг с другом. Эти космические дорожно-транспортные происшествия не так страшны, как может показаться, поскольку звезды, как правило, проходят друг мимо друга. В итоге галактики сливаются, а большинство их звезд объединяется в новую, более крупную галактику. Как Млечный Путь, так и наша ближайшая крупная соседка, Туманность Андромеды, – пиццеобразные галактики, которые называют спиральными из-за восхитительных рукавов (рис. 2.2). Когда сталкиваются две спиральные галактики, результат сначала кажется беспорядочным, а затем формируется округлая капля из звезд, называемая эллиптической галактикой. Такая судьба ждет и нас, поскольку через несколько миллиардов лет нам предстоит столкновение с Туманностью Андромеды. Неизвестно, будут ли наши потомки называть свой дом Млечномедой, но мы твердо знаем, что это будет эллиптическая галактика: телескопы позволили увидеть множество подобных столкновений на разных стадиях, и результаты этих наблюдений вполне согласуются с теоретическими предсказаниями.

Если галактики образовались за счет слияния более мелких галактик, насколько малы были те, первоначальные? Эти поиски были темой первого исследовательского проекта, который меня по-настоящему озадачил. Ключевой частью моих вычислений было определение того, как химические реакции в газе порождают молекулы, способные приводить к снижению давления за счет излучения тепловой энергии. Но каждый раз, когда мне казалось, что вычисления окончены, я обнаруживал, что применяемые мной формулы молекул содержат серьезную ошибку, делающую все расчеты неверными и заставляющие начать все сначала. Через четыре года после того, как научный руководитель Джо Силк впервые предложил мне этим заняться, я был настолько раздосадован, что подумывал заказать футболку с надписью «Я ненавижу молекулы» и изображением молекулы водорода, моего главного врага, перечеркнутой толстой красной линией, как на знаке «Курение запрещено». Но затем удача мне улыбнулась: перебравшись в Мюнхен на позицию постдока, я встретил студента по имени Том Абель, который только что завершил поистине энциклопедические расчеты всех молекулярных формул, которые мне требовались. Он присоединился к нашей команде в качестве соавтора, и 24 часа спустя дело было сделано. Мы предсказывали, что масса самых первых галактик составляла «всего» около 1 млн масс Солнца. Нам повезло: этот результат в основном согласуется с гораздо более сложными компьютерными моделями, которыми профессор Том занимается сейчас в Стэнфорде.

 

Возможно, наша Вселенная расширяется

Самое грандиозное шоу на Земле, в рамках которого поколения живых организмов рождаются, взаимодействуют и умирают, началось около 4,5 млрд лет назад. Кроме того, мы открыли, что это часть еще более грандиозного спектакля, в котором поколения галактик рождаются, взаимодействуют и умирают в космической «экосистеме». Так вот, не может ли быть в этой постановке третьего уровня, на котором могут рождаться и умирать целые вселенные? В частности, нет ли признаков того, что наша Вселенная имела начало во времени? Если да, как и когда это произошло?

Почему галактики не падают? С ответа на этот вопрос начинается наш следующий рывок, отодвигающий предел знания еще дальше в прошлое. Мы видели, что Луна не падает на Землю, потому что обращается вокруг нее с высокой скоростью. Вселенная во всех направлениях населена галактиками, и очевидно, что для них это объяснение не подходит. Не все они обращаются вокруг нас. И если Вселенная вечна и в целом статична (то есть далекие галактики не движутся быстро), почему же они не упадут на нас, как случилось бы с Луной, если бы она вдруг остановилась?

Конечно, во времена Ньютона никто не знал о галактиках. Но если, подобно Джордано Бруно, представить себе бесконечную статическую Вселенную, однородно заполненную звездами, то должно иметься хотя бы примерное объяснение, позволяющее не волноваться, что они на нас упадут. Законы Ньютона утверждают, что к каждой звезде приложена большая (в действительности бесконечная) сила гравитации, действующая в равной мере во всех направлениях, и можно заключить, что эти противоположно направленные силы погасят друг друга, оставив все звезды в неподвижности.

В 1915 году это объяснение было опровергнуто новой теорией гравитации – общей теорией относительности[7]. Ее автор Альберт Эйнштейн понимал, что статическая бесконечная Вселенная, однородно заполненная материей, не укладывается в новые уравнения гравитации. И как же он поступил? Он, безусловно, усвоил главный урок Ньютона: надо смело экстраполировать свои уравнения и представить, какого рода Вселенная будет им удовлетворять, а затем выяснить, какие наблюдения позволяют проверить, действительно ли мы живем в такой Вселенной. По иронии судьбы, даже Эйнштейн, один из самых изобретательных ученых всех времен, чей принцип состоял в том, чтобы подвергать сомнению самые несомненные допущения и авторитеты, не решился усомниться в собственном авторитете и собственной уверенности в том, что мы живем в вечной, неизменной Вселенной. Вместо этого он совершил, как впоследствии сам признавался, свою величайшую ошибку: изменил уравнения, добавив дополнительный член, позволяющий Вселенной быть статической и вечной. Двойная ирония состоит в том, что сегодня этот дополнительный член, похоже, вновь появился в уравнениях в форме космической темной энергии, которую мы еще обсудим, но на этот раз он имеет иной смысл и не делает нашу Вселенную статической.

Человеком, которому, наконец, хватило смелости и способностей, чтобы довериться уравнениям Эйнштейна, оказался русский физик и математик Александр Фридман. Он решил их в самом общем случае для Вселенной, однородно заполненной материей, и обнаружил нечто шокирующее: большинство решений не было статическим, а изменялось во времени! Статическое решение Эйнштейна было не просто исключением из обычного поведения, но и являлось неустойчивым: почти статическая Вселенная не могла оставаться в таком состоянии длительное время. Если Ньютон показал, что естественное состояние Солнечной системы – пребывать в движении (Земля и Луна просто не могут вечно оставаться в неподвижности), то Фридман продемонстрировал, что естественное состояние нашей Вселенной – движение.

О каком именно движении шла речь? Фридман открыл, что самым естественным состоянием для Вселенной является расширение или сжатие. Если она расширяется, то все объекты внутри нее отдаляются друг от друга, как шоколадные крошки на поднимающемся кексе (рис. 3.2). В этом случае в прошлом все они должны были располагаться ближе друг к другу. На самом деле в простейшем фридмановском решении для расширяющейся Вселенной в прошлом есть определенный момент, когда все, что мы наблюдаем сегодня, находилось в одном и том же месте, создавая там бесконечную плотность. Иными словами, у нашей Вселенной есть начало, и ее рождение представляло собой взрыв чего-то бесконечно плотного. Большой взрыв.

 

Рис. 3.2. Далекие галактики удаляются друг от друга, как шоколадные крошки на поднимающемся кексе (слева): с точки зрения любой из них, все остальные удаляются со скоростью, пропорциональной расстоянию до них. Но если считать, что пространство растягивается, как поверхность кекса, то не галактики движутся относительно пространства, а само пространство меняется так, что все расстояния равномерно увеличиваются (справа), как если бы мы переобозначили отметки на всех линейках, сделав из миллиметров сантиметры.

 

Реакцией на фридмановский Большой взрыв была оглушительная тишина. Хотя его статья была опубликована в одном из наиболее престижных физических журналов Германии и обсуждалась Эйнштейном и иными учеными, в итоге она была, по большому счету, проигнорирована и не оказала практически никакого влияния на господствующую картину мира того времени. Игнорирование великих озарений – давняя традиция в космологии (на самом деле, науки в целом): мы уже обсуждали гелиоцентризм Аристарха и далекие солнечные системы Бруно, а дальше в этой и в следующих главах мы встретим еще много таких примеров. В случае Фридмана, я думаю, причина отчасти была в том, что он опередил свое время. В 1922 году известная Вселенная, по сути, ограничивалась галактикой Млечный Путь (на самом деле, лишь небольшой ее частью, которую люди могли наблюдать), а она не расширяется, поскольку сотни миллиардов ее звезд удерживаются на орбитах гравитационным притяжением. Это ответ на девятый вопрос из списка в предыдущей главе: расширяется ли Млечный Путь? Фридмановское расширение относится лишь к таким большим масштабам, в которых можно игнорировать скучивание материи в галактики, а галактик – в скопления. На рис. 2.2 видно, что на больших расстояниях – около 100 млн световых лет – распределение галактик становится довольно однородным, что позволяет применять фридмановские решения для однородной Вселенной, а значит, галактики, разделенные таким большим расстоянием, должны удаляться друг от друга. Но сам факт существования других галактик был установлен Хабблом только в 1925 году, тремя годами позднее! Тут бы и настал звездный час Фридмана. К сожалению, его дни были сочтены: в тот самый год он умер от брюшного тифа в возрасте всего 37 лет.

Для меня Фридман – один из величайших, но, увы, недооцененных героев космологии. Пока я писал этот отрывок, я перечитал первоисточник, статью Фридмана 1922 года, которая заканчивается интригующим примером огромной, в 5 миллиардов триллионов масс Солнца, вселенной, для которой он рассчитал время жизни: около 10 млрд лет – того же порядка, что и общепризнанный сегодня возраст Вселенной. Фридман не объясняет, откуда он взял это значение задолго до открытия галактик, но это, безусловно, достойное окончание выдающейся статьи выдающегося человека.

 

Вселенная расширяется

Через пять лет история повторилась: аспирант Массачусетского технологического института, бельгийский священник и астрофизик Жорж Леметр вновь опубликовал независимо переоткрытое им фридмановское решение для Большого взрыва. И вновь научное сообщество фактически проигнорировало его.

В конце концов идея Большого взрыва была воспринята не из-за новой теоретической работы, а из-за новых измерений. Когда Эдвин Хаббл убедился в существовании других галактик, следующим естественным его шагом стало изучение их распределения в пространстве и движения. Как правило, довольно легко измерить скорость, с которой объект приближается к вам или удаляется, поскольку это движение вызывает сдвиг линий в спектре. Красный свет имеет наименьшую частоту среди всех цветов радуги, и если галактика удаляется от нас, все ее спектральные линии будут испытывать красное смещение, то есть сдвигаться ближе к красному концу спектра, и чем выше ее скорость, тем сильнее будет это смещение. Если же галактика приближается, то ее цвета, напротив, будут испытывать голубое смещение к более высоким частотам.

Если бы галактики просто беспорядочно двигались в пространстве, то примерно половина из них имела бы красное смещение, а остальные – голубое. К удивлению Хаббла, почти все изученные им галактики имели красное смещение. Почему они разбегаются от нас? Они нас не любят? Мы что-то не то сказали? Вдобавок Хаббл открыл, что чем больше расстояние d, тем выше скорость v, с которой галактика удаляется от нас. Это выражается формулой v = Hd, которую сейчас называют законом Хаббла. Здесь H – постоянная Хаббла, которую сам Хаббл в эпохальной статье 1929 года скромно обозначил буквой K. Интересно, что Жорж Леметр в своей незамеченной статье 1927 года показал, как из решения, описывающего расширяющуюся Вселенную, вытекает закон Хаббла: если все в мире расширяется, удаляясь от всего прочего, то и далекие галактики разбегаются от нас согласно именно такому закону.

Если галактика радиально удаляется, значит, раньше она находилась очень близко. Давно ли это было? Глядя на автомобиль, удирающий после ограбления банка, можно, разделив пройденное расстояние на скорость, оценить, как давно он отъехал от банка. Если сделать это для удаляющихся галактик, закон Хаббла дает одинаковый ответ – d / v = 1/ H – для всех них. Современные измерения дают оценку этой величины 1/ H ≈ 14 млрд лет, то есть открытие Хаббла свидетельствует, что около 14 млрд лет назад имело место нечто весьма впечатляющее – огромное количество материи было сжато до очень высокой плотности. Чтобы получить более точный ответ, нужно принять во внимание ускорение (замедление, равномерное движение) автомобиля (Вселенной) с момента оставления места преступления. Мы, делая сейчас расчеты с применением уравнения Фридмана и данных современных измерений, обнаруживаем, что требуется очень незначительная, на несколько процентов, корректировка: после Большого взрыва наша Вселенная примерно половину времени замедлялась, а остальное время ускорялась, так что соответствующие поправки примерно компенсируют друг друга.

 

Что означает расширение Вселенной?

После того как были опубликованы измерения Хаббла, они убедили даже Эйнштейна: наша Вселенная официально стала расширяющейся. Но что означает расширение Вселенной? Здесь мы подходим еще к четырем вопросам, сформулированным в начале гл. 2.

Вопрос первый: действительно ли галактики удаляются от нас – или это пространство расширяется? Весьма удобно, что теория гравитации (общая теория относительности) Эйнштейна считает эти две точки зрения эквивалентными и в равной мере правильными (рис. 3.2), так что думайте об этом так, как вам кажется более естественным[8].

Согласно первой точке зрения, пространство не меняется, а галактики движутся сквозь него, как шоколадные крошки на поднимающейся сдобной булке под действием добавленного в тесто разрыхлителя. Все галактики (шоколадные крошки) удаляются друг от друга, и чем больше расстояние между ними – тем быстрее. В частности, если вы встанете на конкретную крошку (галактику), вы увидите, что движение всех остальных относительно нее подчиняется закону Хаббла: все они удаляются от вас радиально, и с увеличением расстояния вдвое их скорость также удваивается. Примечательно, что все выглядит совершенно одинаково независимо от того, с какой шоколадной крошки (галактики) вести наблюдение, так как если у распределения галактик нет границы, то расширение не имеет центра – оно кажется одинаковым отовсюду.

Согласно второй точке зрения, пространство подобно тесту сдобной булки: оно расширяется так, что шоколадные крошки относительно теста неподвижны, а галактики не двигаются сквозь пространство. То есть можно считать галактики покоящимися в пространстве (рис. 3.2, справа), при этом все расстояния между ними изменяются. Это все равно, что поменять отметки на воображаемых линейках, соединяющих галактики, сделав их из миллиметровых сантиметровыми, отчего все межгалактические расстояния станут в 10 раз больше прежних.

Это дает ответ еще на один вопрос: не нарушают ли галактики, удаляющиеся быстрее света, теорию относительности? Закон Хаббла v = Hd говорит, что галактики будут удаляться от нас быстрее скорости света c, если расстояние до них больше c / H ≈ 14 млрд световых лет, и у нас нет оснований сомневаться, что такие галактики существуют. Не противоречит ли это утверждению Эйнштейна о том, что никакой объект не может двигаться быстрее света? Ответ – и да, и нет. Это нарушает специальную теорию относительности 1905 года, но не противоречит общей теории относительности 1915 года, которая стала последним словом Эйнштейна по данному вопросу. Следовательно, все в порядке. Общая теория относительности ослабила световой барьер: если специальная теория относительности утверждает, что никакие два объекта не могут двигаться быстрее света друг относительно друга ни при каких обстоятельствах, то общая говорит, что они не могут двигаться быстрее света друг относительно друга, когда они находятся в одном и том же месте. Однако галактики, удаляющиеся со сверхсветовой скоростью, находятся очень далеко от нас. Если настаивать на том, что пространство расширяется, можно перефразировать это соображение: ничему не позволено двигаться быстрее света сквозь пространство, но само пространство может растягиваться с какой ему угодно скоростью.

Кстати, о далеких галактиках. Я видел газетные статьи, где говорилось о галактиках, отстоящих от нас на 30 млрд световых лет. Если возраст нашей Вселенной всего 14 млрд лет, то как мы видим объекты в 30 млрд световых лет? Каким образом их свету хватило времени, чтобы добраться до нас? Более того, они удаляются от нас быстрее света, что делает абсурдным сам разговор о возможности их увидеть. Ответ в данном случае состоит в том, что мы видим эти далекие галактики не там, где они находятся теперь, а там, где они были, когда испускали свет, который сейчас доходит до нас. Точно так же, как Солнце мы видим таким, каким оно было 8 минут назад, и в том месте, где оно было 8 минут назад, далекие галактики мы можем видеть такими, какими они были 13 млрд лет назад, и в тех местах, где они были тогда, – примерно в 8 раз ближе к Земле, сравнительно с их нынешним положением. Так что свету из таких галактик достаточно пройти сквозь пространство всего 13 млрд световых лет, а разница добирается за счет растяжения пространства. Это похоже на то, как по бегущей дорожке в аэропорту можно пройти 20 метров, сделав всего 10 шагов.

 

Как расширяется Вселенная?

Не случится ли там, вдали, куда направлено разбегание галактик, какого-нибудь космического ДТП, когда они врежутся в то, что находится там, куда они расширяются? Если наша Вселенная расширяется согласно уравнениям Фридмана, такой проблемы не существует: как показано на рис. 3.2, расширение выглядит одинаково повсюду в космосе, так что подобных проблемных мест быть не может. Если принять ту точку зрения, что далекие галактики удаляются сквозь статическое пространство, причина, по которой они никогда не сталкиваются с более далекими галактиками, состоит в том, что те удаляются еще быстрее: вам не удастся врезаться сзади в разгоняющийся «Порше», если сами вы сидите за рулем ископаемого «Форда-Т». Если же считать, что пространство расширяется, то объяснение состоит просто в том, что его объем не сохраняется. Новости с Ближнего Востока приучили нас к той мысли, что нельзя получить больше места иным путем, кроме как отобрав его у кого-нибудь. Однако общая теория относительности утверждает прямо противоположное: дополнительный объем может быть создан в определенной области между некоторыми галактиками без того, чтобы он расширялся в другие области. Этот объем просто остается между галактиками (рис. 3.2, справа).

 

Космическая классная комната

Как бы безумно это ни звучало, представление о расширении Вселенной логически последовательно и поддерживается астрономическими наблюдениями. Со времени Эдвина Хаббла подтверждающих эту теорию наблюдений стало гораздо больше благодаря современным технологиям и новым открытиям. Самый фундаментальный вывод состоит в том, что изменениям подвержена вся Вселенная: отодвинув рубеж наших знаний на миллиарды лет, мы обнаружили Вселенную, которая еще не настолько сильно расширилась и поэтому была плотнее и гуще населена. Таким образом, мы обитаем не в скучном статическом пространстве, аксиоматизированном Евклидом, а в динамичном эволюционирующем пространстве, которое пережило своего рода детство и даже, возможно, рождение – около 14 млрд лет назад.

Радикально усовершенствованные телескопы усилили наше зрение настолько, что теперь мы можем непосредственно наблюдать за эволюцией пространства. Представьте, что вы выступаете с презентацией перед большой аудиторией. Внезапно вы замечаете нечто забавное. Ближайший к вам ряд кресел занят людьми примерно вашего возраста. Однако в десятом ряду вы видите лишь подростков. За ними – кучку маленьких детей, а ряд позади них занят младенцами. Вглядываясь во Вселенную, мы видим нечто подобное. Вблизи множество больших, зрелых галактик, похожих на нашу, а очень далеко мы видим в основном маленькие юные галактики, которые не кажутся вполне разви


Поделиться с друзьями:

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.054 с.