Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Магнитное поле. Источники. Гипотеза Ампера.

2017-06-25 3267
Магнитное поле. Источники. Гипотеза Ампера. 5.00 из 5.00 4 оценки
Заказать работу

Вверх
Содержание
Поиск

Гипотеза Ампера. Ампера (1775- 1836г.) выдвинул гипотезу о существовании электрических токов, циркулирующих внутри каждой молекулы вещества. В 1897г. гипотезу подтвердил английский учёный Томсон, а в 1910г. измерил токи американский учёный Милликен. Вывод: движение электронов представляет собой круговой ток, а о том, что вокруг проводника с электрическим током существует магнитное поле.

Магнитное поле - это особый вид материи, специфической особенностью которой является действие на движущийся электрический заряд, проводники с током, тела, обладающие магнитным моментом, с силой, зависящей от вектора скорости заряда, направления силы тока в проводнике и от направления магнитного момента тела.

История магнетизма уходит корнями в глубокую древность, к античным цивилизациям Малой Азии. Именно на территории Малой Азии, в Магнезии, находили горную породу, образцы которой притягивались друг к другу. По названию местности такие образцы и стали называть "магнетиками". Любой магнит в форме стержня или подковы имеет два торца, которые называются полюсами; именно в этом месте сильнее всего и проявляются его магнитные свойства. Если подвесить магнит на нитке, один полюс всегда будет указывать на север. На этом принципе основан компас. Обращенный на север полюс свободно висящего магнита называется северным полюсом магнита (N). Противоположный полюс называется южным полюсом (S).

Магнитные полюсы взаимодействуют друг с другом: одноименные полюсы отталкиваются, а разноименные - притягиваются. Аналогично концепции электрического поля, окружающего электрический заряд, вводят представление о магнитном поле вокруг магнита.

В 1820 г. Эрстед (1777-1851) обнаружил, что магнитная стрелка, расположенная рядом с электрическим проводником, отклоняется, когда по проводнику течет ток, т. е. вокруг проводника с током создается магнитное поле. Если взять рамку с током, то внешнее магнитное поле взаимодействует с магнитным полем рамки и оказывает на нее ориентирующее действие, т. е. существует такое положение рамки, при котором внешнее магнитное поле оказывает на нее максимальное вращающее действие, и существует положение, когда вращающий момент сил равен нулю.

Исто́чник то́ка (в теории электрических цепей) — элемент, двухполюсник, сила тока через который не зависит от напряжения на его зажимах (полюсах). Используются также термины генератор тока и идеальный источник тока.

 

Магнитная индукция.

Если заряд частицы равен q, ее скорость равна v, а индукция магнитного поля в данной точке пространства равна В, то на частицу в данной точке со стороны магнитного поля действует сила, равная:

Таким образом, В — это вектор, величина и направление которого таковы, что сила Лоренца, действующая на движущийся заряд со стороны магнитного поля равна:

Здесь альфа — это угол между вектором скорости и вектором магнитной индукции. Вектор силы Лоренца F перпендикулярен вектору скорости и вектору магнитной индукции. Его направление для случая движения положительно заряженной частицы в однородном магнитном поле определяется правилом левой руки:

«Если левую руку расположить так, чтобы вектор магнитной индукции входил в ладонь, а четыре вытянутых пальца были направлены по направлению движения положительно заряженной частицы, то отогнутый на 90 градусов большой палец покажет направление силы Лоренца».

 

Поскольку ток в проводнике является движением заряженных частиц, то магнитную индукцию можно определить и как отношение максимального механического момента, действующего со стороны однородного магнитного поля на рамку с током, к произведению силы тока в рамке на площадь рамки:

Магнитная индукция — фундаментальная характеристика магнитного поля, как напряженность для электрического поля. В системе СИ магнитная индукция измеряется в тесла (Тл), в системе СГС — в гауссах (Гс). 1 тесла = 10000 гаусс. 1 Тл — это индукция такого однородного магнитного поля, в котором на рамку площадью 1 м2, по которой течет ток в 1 А, действует максимальный вращающий механический момент сил, равный 1 Н • м.

 

Кстати, индукция магнитного поля Земли на широте 50° в среднем составляет 0,00005 Тл, а на экваторе — 0,000031 Тл. Вектор магнитной индукции всегда направлен по касательной к магнитной силовой линии.

 

Контур, помещенный в однородное магнитное поле, пронизывается магнитным потоком Ф, - потоком вектора магнитной индукции. Величина магнитного потока Ф зависит от направления вектора магнитной индукции относительно контура, от его величины, и от площади контура, пронизываемого линиями магнитной индукции. Если вектор В будет перпендикулярен площади контура, то магнитный поток Ф, пронизывающий контур, будет максимальным.

 

Магнитные силы.

Магнитное поле действует получила название – сила Сила, действующая на проводник тока, длине проводника, магнитной направлением вектора магнитной определить по правилу левой движущиеся заряды широко циклотроне- ускорителе элементарных Хорошо известно, что магнитное постоянными магнитами. Постоянные веществ, но все вещества создают магнитное поле. Согласно микроскопическими токами Закон Фарадея, основной закон э.д.с. индукции в проводнике пересекает магнитные силовые Если замкнутый проводник изменяющемся магнитном проводника в магнитном поле создавая на другом конце проводника проводника возникает разность только тогда, когда проводник проводник удаляют из магнитного Электромагнитная проводник когда Напряжение индуцированным э.д которой углом поля больше перемещается Относительное возникать вследствие перемещения поля или и того, и другого перемещается под прямым углах меньших 90 градусов перемещается параллельно проводник, тем больше индуцированное действует с определенной силой на проводник с током сила Ампера.

FА = I B ∆l sin α.

на проводник, по которому течет ток, прямо пропорциональна проводника, магнитной индукции и синусу угла между направлением вектора магнитной индукции. Направление силы Ампера правилу левой руки. Кроме этого, магнитное поле действует частицу, находящуюся в магнитном поле называют силой Лоренца. Силу Лоренца можно определить по формуле:

FЛ = qυ Bsin α.

На движущуюся частицу со стороны магнитного действует сила Лоренца, которая перпендикулярна и не совершает работы. Действие магнитного широко используется в современной технике, например ускорителе элементарных частиц. магнитное поле создается ни только электрическими магнитами. Постоянные магниты могут быть изготовлены вещества, помещенные в магнитное поле, намагничиваются поле. Согласно гипотезе Ампера эти поля порождаются токами, циркулирующими внутри атомов и молекул основной закон электромагнетизма, формулируется проводнике прямо пропорциональна скорости, с которой магнитные силовые линии, т.е. скорости изменения магнитного проводник перемещается в магнитном поле или находится магнитном поле, то в нем возникает электрический ток итном поле электроны перемещаются к одному концу конце проводника дефицит электронов. В результате возникает разность потенциалов. Эта разность потенциалов проводник перемещается относительно магнитного из магнитного поля, свободные электроны возвращаются Электромагнитная индукция имеет место в двух проводник перемещается относительно магнитного когда магнитное поле перемещается относительно апряжение, возникающее в проводнике, называется индуцированным напряжением, или э.д.с индукции э.д.с. определяется величиной магнитного поля которой проводник перемещается относительно углом, под которым находится проводник относительно поля, и длиной проводника. Чем сильнее магнитное больше величина э.д.с. индукции.

Чем быстре перемещается относительно поля, тем больше Относительное движение проводника и магнитного перемещения проводника (но не вдоль самого другого. Максимальное напряжение индуцируется прямым углом по отношению к силовым линиям магнитного градусов индуцируется меньшее напряжение. Если параллельно силовым линиям, э.д.с. индукции не возникает больше индуцированное напряжение.

 

Магнитные свойства веществ.

Всякое вещество является магнетиком, т.е. способно под действием магнитного поля приобретать магнитный момент (намагничиваться). По величине и направлению этого момента, а также по причинам, его породившим, все вещества делятся на группы. Основные из них – диа- и парамагнетики.

Молекулы диамагнетика собственного магнитного момента не имеют. Он возникает у них только под действием внешнего магнитного поля и направлен против него. Таким образом, результирующее магнитное поле в диамагнетике меньше, чем внешнее поле, правда, на очень малую величину. Это приводит к тому, что при помещении диамагнетика в неоднородное магнитное поле он стремится сместиться в ту область, где напряжение магнитного поля меньше.

Молекулы (или атомы) парамагнетика имеют собственные магнитные моменты, которые под действием внешних полей ориентируются по полю и тем самым создают результирующее поле, превышающее внешнее. Парамагнетики втягиваются в магнитное поле. Так, например, жидкий кислород - парамагнетик, он притягивается к магниту.

Существует ряд веществ, в которых квантовые эффекты межатомных взаимодействий приводят к появлению специфических магнитных свойств.

Наиболее интересное свойство - ферромагнетизм. Оно характерно для группы веществ в твердом кристаллическом состоянии (ферромагнетиков), характеризующихся параллельной ориентацией магнитных моментов атомных носителей магнетизма.

Параллельная ориентация магнитных моментов существует в довольно больших участках вещества - доменах. Суммарные магнитные моменты отдельных доменов имеют очень большую величину, однако сами домены обычно ориентированы в веществе хаотично. При наложении магнитного поля происходит ориентация доменов, что приводит к возникновению суммарного магнитного момента у всего объема ферромагнетика, и, как следствие, к его намагничиванию.

Естественно, что ферромагнетики, как и парамагнетики, перемещаются в ту точку поля, где напряженность максимальная (втягиваются в магнитное поле). Из-за большой величины магнитной проницаемости сила, действующая на них, гораздо больше.

Диапазон температур Кюри для ферромагнетиков очень широк: у радолиния температура Кюри 200 C, для чистого железа - 1043 К. Практически всегда можно подобрать вещество с нужной температурой Кюри.

При понижении температуры все парамагнетики, кроме тех, у которых парамагнетизм обусловлен электронами проводимости, переходят либо в ферромагнитное, либо в антиферромагнитное состояние.

Для антиферромагнетиков также существует температура, при которой антипараллельная ориентация спинов исчезает. Эта температура называется антиферромагнитной точкой Кюри или точкой Нееля.

У некоторых ферромагнетиков (эрбин, диоброзин, сплавов марганца и меди) таких температур две (верхняя и нижняя точка Нееля), причем антиферромагнитные свойства наблюдаются только при промежуточных температурах. Выше верхней точки вещество ведет себя как парамагнетик, а при температурах, меньших нижней точки Нееля, становится ферромагнетиком.

Ферримагнетизм - (или антиферромагнетизм нескомпенсированный) совокупность магнитных свойств веществ (ферромагнетиков) в твердом состоянии, обусловленных наличием внутри тела межэлектронного обменного взаимодействия, стремящегося создать антипараллельную ориентацию соседних атомных магнитных моментов. В отличие от антиферромагнетиков, соседние противоположно направленные магнитные моменты в силу каких-либо причин не полностью компенсируют друг друга. Поведение ферримагнетика во внешнем поле во многом аналогично ферромагнетику, но температурная зависимость свойств имеет иной вид: иногда существует точка компенсации суммарного магнитного момента при температуре ниже точки Нееля. По электрическим свойствам ферромагнетики - диэлектрики или полупроводники.

Суперпарамагнетизм - квазипарамагнитное поведение систем, состоящих из совокупности экстремально малых ферро- или ферримагнитных частиц. Частицы этих веществ при определенно малых размерах переходят в однодоменное состояние с однородной самопроизвольной намагниченностью по всему объему частицы. Совокупность таких веществ ведет себя по отношению к воздействию внешнего магнитного поля и температуры подобно парамагнитному газу (сплавы меди с кобальтом, тонкие порошки никеля и т.д.).

Суперпарамагнетизм применяется в тонких структурных исследованиях, в методах неразрушающего определения размеров, форм, количества и состава магнитной фазы и т.п.

Пьезомагнетики - вещества, у которых при наложении упругих напряжений возникает спонтанный магнитный эффект, пропорциональный первой степени величины напряжений. Этот эффект весьма мал и легче всего его обнаружить в антиферромагнетиках.

Магнитоэлектрики - вещества, у которых при помещении их в электрическое поле возникает магнитный момент, пропорциональный значению поля.

 

21) Гармонические колебания. Условия, характеристики, уравнение, графики.

Гармонические колебания — колебания, при которых физическая (или любая другая) величина изменяется с течением времени по синусоидальному или косинусоидальному закону. Кинематическое уравнение гармонических колебаний имеет вид

или

где х — смещение (отклонение) колеблющейся точки от положения равновесия в момент времени t; А — амплитуда колебаний, это величина, определяющая максимальное отклонение колеблющейся точки от положения равновесия; ω — циклическая частота, величина, показывающая число полных колебаний происходящих в течение 2π секунд; — полная фаза колебаний, — начальная фаза колебаний.

Обобщенное гармоническое колебание в дифференциальном виде:

 


Поделиться с друзьями:

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.015 с.