Основные направления компьютерной графики — КиберПедия 

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Основные направления компьютерной графики

2017-06-25 2200
Основные направления компьютерной графики 5.00 из 5.00 3 оценки
Заказать работу

Классификация компьютерной графики

Классифицировать КГ можно по следующим критериям:

В зависимости от организации работы графической системы

1. пассивная или не интерактивная – это организация работы графической системы, при которой дисплей используется только для вывода изображения под управлением программы без вмешательства пользователя. Графическое представление после получения не может быть изменено.

2. активная или интерактивная (динамическая, диалоговая) – это воспроизведение на экране изображений под управлением пользователя.

В зависимости от способа формирования изображения

1. растровая графика – это графика, в которой изображение представляется двумерным массивом точек, которые являются элементами растра. Растр – это двумерный массив точек (пикселей), упорядоченных в строки и столбцы, предназначенных для представления изображения путем окраски каждой точки в определенный цвет.

2. векторная графика – метод построения изображений, в котором используются математические описания для определения положения, длины и координаты выводимых линий.

3. фрактальная графика – напрямую связана с векторной. Как и векторная, фрактальная графика вычисляемая, но отличается тем, что никакие объекты в памяти компьютера не хранятся.

4. 3D-графика.

В зависимости от цветового охвата различают черно-белую и цветную графики.

В зависимости от способов показа изображения

1. иллюстративная графика – способ изображения графического материала.

2. демонстративная графика – связана с динамическими объектами.

Технологии изображения динамических объектов используют три основных способа:

1. рисование – стирание;

2. смена кадров;

3. динамические образы.

Средства создания и обработки демонстративной графики подразделяют на анимацию (двухмерную и трехмерную), обработку и вывод живого видео и разнообразные специальные обработчики видеоматериалов.

В зависимости от способов применения

1. научная графика – вывод графиков на плоскости и в пространстве, решение систем уравнений, графическая интерпретация (MathCAD).

2. инженерная графика (системы автоматизации проектных работ) – различные применения в машиностроении, в проектировании печатных плат, архитектуре и т. д.

3. деловая графика – построение графиков, диаграмм, создание рекламных роликов, демонстраторов.

Деловая графика

Понятие деловой графики включает методы и средства графической интерпретации научной и деловой информации: таблицы, схемы, диаграммы, иллюстрации, чертежи.

Среди программных средств КГ особое место занимают средства деловой графики. Они предназначены для создания иллюстраций при подготовке отчетной документации, статистических сводок и других иллюстративных материалов. Программные средства деловой графики включаются в состав текстовых и табличных процессоров.

В среде MS Office имеются встроенные инструменты для создания деловой графики: графический редактор Paint, средство MS Graph, диаграммы MS Excel.

Виды компьютерной графики

Несмотря на то, что для работы с КГ существует множество классов программного обеспечения, выделяют всего три вида КГ: растровую, векторную и фрактальную графику. Они различаются принципами формирования изображения при отображении на экране монитора или при печати на бумаге.

Растровая графика применяется при разработке электронных и полиграфических изданий. Иллюстрации, выполненные средствами растровой графики, редко создают вручную с помощью компьютерных программ. Чаще для этой цели сканируют иллюстрации, подготовленные художником на бумаге, или фотографии. В последнее время для ввода растровых изображений в компьютер нашли широкое применение цифровые фото- и видеокамеры. Соответственно, большинство графических редакторов, предназначенных для работы с растровыми иллюстрациями, ориентированы не столько на создание изображения, сколько на их обработку. В Интернете, в основном, применяются растровые иллюстрации.

Программные средства для работы с векторной графикой наоборот предназначены, в первую очередь, для создания иллюстраций и в меньшей степени для их обработки. Такие средства широко используют в рекламных агентствах, дизайнерских бюро, редакциях и издательствах. Оформительские работы, основанные на применении шрифтов и простейших геометрических элементов, решаются средствами векторной графики намного проще. Существуют примеры высокохудожественных произведений, созданных средствами векторной графики, но они скорее исключение, чем правило, поскольку художественная подготовка иллюстраций средствами векторной графики чрезвычайно сложна.

Программные средства для работы с фрактальной графикой предназначены для автоматической генерации изображений путем математических расчетов. Создание фрактальной художественной композиции состоит не в рисовании или оформлении, а в программировании. Фрактальную графику редко применяют для создания печатных или электронных документов, но ее часто используют в развлекательных программах.

Растровая графика. Основным элементом растрового изображения является точка. Если изображение экранное, то эта точка называется пикселом. Отличительными особенностями пиксела являются его однородность (все пикселы по размеру одинаковы) и неделимость (пиксел не содержит более мелких пикселов). В зависимости от того, на какое графическое разрешение экрана настроена операционная система компьютера, на экране могут размещаться изображения, имеющие 640х480, 800х600, 1024х768 и более пикселов.

С размером изображения непосредственно связано его разрешение. Этот параметр измеряется в точках на дюйм (dots per inch - dpi). У монитора с диагональю 15 дюймов размер изображения на экране составляет примерно 28х21 см. Зная, что в 1 дюйме 25,4 мм, можно рассчитать, что при работе монитора в режиме 800х600 пикселов разрешение экранного изображения равно 72 dpi.

При печати разрешение должно быть намного выше. Полиграфическая печать полноцветного изображения требует разрешения не менее 300 dpi. Стандартный фотоснимок размером 10х15 см должен содержать примерно 1000х1500 пикселов.

Цвет любого пиксела растрового изображения запоминается в компьютере с помощью комбинации битов. Чем больше битов, тем больше оттенков цветов можно получить. Число битов, используемых компьютером для любого пиксела, называется битовой глубиной пиксела. Наиболее простое растровое изображение, состоящее из пикселов имеющих только два цвета – черный и белый, называется однобитовыми изображениями. Число доступных цветов или градаций серого цвета равно 2 в степени равной количеству битов в пикселе. Цвета, описываемые 24 битами, обеспечивают более 16 миллионов доступных цветов и их называют естественными цветами.

Растровые изображения обладают множеством характеристик, которые должны быть организованы и фиксированы компьютером. Размеры изображения и расположение пикселов в нем это две основные характеристики, которые файл растровых изображений должен сохранить, чтобы создать картинку. Даже если испорчена информация о цвете любого пиксела и любых других характеристиках компьютер все равно сможет воссоздать версию рисунка, если будет знать, как расположены все его пикселы. Пиксел сам по себе не обладает размером, он всего лишь область памяти компьютера, хранящая информацию о цвете, поэтому коэффициент прямоугольности изображения (определяет количество пикселов матрицы рисунка по горизонтали и по вертикали) не соответствует никакой реальной размерности. Зная только коэффициент прямоугольности изображения с некоторой разрешающей способностью можно определить настоящие размеры рисунка. называется овое изображение состоит из пикселов имеющих тлько два цвета - черный села. в. по вертикали. координаты выводимых ли

Разрешающая способность растра – это просто число элементов (пиксел) заданной области (дюйм). Файлы растровой графики занимают большое количество памяти компьютера. Наибольшее влияние на количество памяти оказывают три фактора:

1. размер изображения;

2. битовая глубина цвета;

3. формат файла, используемый для хранения изображения.

Достоинства растровой графики:

1. аппаратная реализуемость;

2. программная независимость (форматы файлов, предназначенные для сохранения точечных изображений, являются стандартными, поэтому не имеют решающего значения, в каком графическом редакторе создано то или иное изображение);

3. фотореалистичность изображений.

Недостатки растровой графики:

1. значительный объем файлов (определяется произведением площади изображения на разрешение и на глубину цвета (если они приведены к единой размерности);

2. принципиальные сложности трансформирования пиксельных изображений;

3. эффект пикселизации – связан с невозможностью увеличения изображения для рассмотрения деталей. Поскольку изображение состоит из точек, то увеличение приводит к тому, что точки становятся крупнее. Никаких дополнительных деталей при увеличении растрового изображения рассмотреть не удается, а увеличение точек растра визуально искажает иллюстрацию и делает ее грубой;

4. аппаратная зависимость – причина многих погрешностей;

5. отсутствие объектов.

Векторная графика. Если в растровой графике основным элементом изображения является точка, то в векторной графике – линия (при этом неважно, прямая это линия или кривая).

Разумеется, в растровой графике тоже существуют линии, но там они рассматриваются как комбинации точек. Для каждой точки линии в растровой графике отводится одна или несколько ячеек памяти (чем больше цветов могут иметь точки, тем больше ячеек им выделяется). Соответственно, чем длиннее растровая линия, тем больше памяти она занимает. В векторной графике объем памяти, занимаемый линией, не зависит от размеров линии, поскольку она представляется в виде формулы, а точнее говоря, в виде нескольких параметров. Что бы мы ни делали с этой линией, изменяются только ее параметры, хранящиеся в ячейках памяти. Количество же ячеек остается неизменным для любой линии.

Линияэто элементарный объект векторной графики. Все, что есть в векторной иллюстрации, состоит из линий. Простейшие объекты объединяются в более сложные (например, объект четырехугольник можно рассматривать как четыре связанные линии, а объект куб еще более сложен: его можно рассматривать либо как 12 связанных линий, либо как 6 связанных четырехугольников). Из-за такого подхода векторную графику часто называют объектно-ориентированной графикой.

П р и м е р. В общем случае уравнение кривой третьего порядка можно записать в виде

x 3 +a 1 y 3 +a 2 x2y+a 3 xy 2 +a 4 x 2 +a 5 y 2 +a 6 xy+a 7 x+a 8 y+a 9 = 0.

Видно, что для записи достаточно девяти параметров. Для задания отрезка кривой третьего порядка надо иметь на два параметра больше. Если добавить к ним параметры, выражающие такие свойства линии, как толщина, цвет, характер и прочее, то для хранения одного объекта достаточно будет 20-30 байтов оперативной памяти. Достаточно сложные композиции, насчитывающие тысячи объектов, расходуют лишь десятки и сотни Кбайт.

Как и все объекты, линии имеют свойства: форма линии, ее толщина, цвет, характер (сплошная, пунктирная и т. п.). Замкнутые линии имеют свойство заполнения. Внутренняя область замкнутого контура может быть заполнена цветом, текстурой, картой. Простейшая линия, если она не замкнута, имеет две вершины, которые называются узлами. Узлы тоже имеют свойства, от которых зависит, как выглядит вершина линии и как две линии сопрягаются между собой.

Заметим, что объекты векторной графики хранятся в памяти в виде набора параметров, но на экран все изображения все равно выводятся в виде точек (просто потому, что экран так устроен). Перед выводом на экран каждого объекта программа производит вычисления координат экранных точек в изображении объекта, поэтому векторную графику иногда называют вычисляемой графикой. Аналогичные вычисления производятся и при выводе объектов на принтер.

Основные понятия КГ

Понятие растра

Появление и широкое использование растра основано на свойстве человеческого зрения воспринимать изображение, состоящее из отдельных точек, как единое целое. Эту особенность зрения с давних пор использовали художники. На ней основана и технология полиграфической печати.

Изображение проецируется на светочувствительную пластину через стекло, на которое равномерно нанесена непрозрачная растровая решетка. В результате непрерывное полутоновое изображение оказывается разбитым на отдельные ячейки, которые называются элементами растра. Растр получил широкое распространение при изготовлении различного рода печатной продукции: газет, журналов, книг.

Понятие непрерывного полутонового изображения пришло из фотографии. На самом деле фотографический отпечаток при просмотре его через оптический прибор с очень большим увеличением тоже состоит из отдельных элементарных точек. Однако они настолько малы, что неразличимы невооруженным глазом.

Другие методы представления изображений: полиграфия, распечатка на принтере, вывод на монитор – используют сравнительно большие по размеру элементы растра.

Свет и цвет

Свет как физическое явление представляет собой поток электромагнитных волн различной длины и амплитуды. Глаз человека, будучи сложной оптической системой, воспринимает эти волны в диапазоне длин приблизительно от 350 до 780 нм. Свет воспринимается либо непосредственно от источника, например, от осветительных приборов, либо как отраженный от поверхностей объектов или преломленный при прохождении сквозь прозрачные и полупрозрачные объекты. Цвет - это характеристика восприятия глазом электромагнитных волн разной длины, поскольку именно длина волны определяет для глаза видимый цвет. Амплитуда, определяющая энергию волны (пропорциональную квадрату амплитуды), отвечает за яркость цвета. Таким образом, само понятие цвета является особенностью человеческого "видения" окружающей среды.

Цвета в природе редко являются простыми. Большинство цветовых оттенков образуется смешением основных цветов. Способ разделения цветового оттенка на составляющие называется цветовой моделью. Существует много различных типов цветовых моделей, но в компьютерной графике, как правило, применяется не более трех. Эти модели известны под названиями RGB, CMYK и HSB.

Цвет – один из факторов нашего восприятия светового излучения. Для характеристики цвета используются следующие атрибуты.

Цветовой тон. Можно определить преобладающей длиной волны в спектре излучения. Цветовой тон позволяет отличить один цвет от другого, например, зеленый от красного, желтого и других.

Яркость. Определяется энергией, интенсивностью светового излучения. Выражает количество воспринимаемого света.

Насыщенность или чистота тона. Выражается долей присутствия белого цвета. В идеально чистом цвете примесь белого отсутствует. Если, например, к чистому красному цвету добавить в определенной пропорции белый цвет (у художников это называется разбелом), то получится светлый бледно-красный цвет.

Указанные три атрибута позволяют описать все цвета и оттенки. То, что атрибутов именно три, является одним из проявлений трехмерных свойств цвета.

Наука, которая изучает цвет и его измерения, называется колориметрией. Она описывает общие закономерности цветового восприятия света человеком.

Одними из основных законов колориметрии являются законы смешивания цветов. Эти законы в наиболее полном виде были сформулированы в 1853 г. немецким математиком Германом Грассманом:

1. Цвет трехмерен - для его описания необходимы три компоненты. Любые четыре цвета находятся в линейной зависимости, хотя существует неограниченное число линейно независимых совокупностей из трех цветов.

Иными словами, для любого заданного цвета (Ц) можно записать такое цветовое уравнение, выражающее линейную зависимость цветов:

Ц = к1 Ц1 + к2 Ц2 + к3 Ц3,

где Ц1, Ц2, Ц3 – некоторые базисные, линейно независимые цвета, коэффициенты к1, к2, и к3 – количество соответствующего смешиваемого цвета. Линейная независимость цветов Ц1, Ц2, Ц3 означает, что ни один из них не может быть выражен взвешенной суммой (линейной комбинацией) двух других.

Первый закон можно трактовать и в более широком смысле, а именно в смысле трехмерности цвета. Необязательно для описания цвета применять смесь других цветов, можно использовать и другие величины, но их обязательно должно быть три.

2. Если в смеси трех цветовых компонентов один меняется непрерывно, в то время как два других остаются постоянными, цвет смеси также изменяется непрерывно.

3. Цвет смеси зависит только от цветов смешиваемых компонентов и не зависит от их спектральных составов.

Смысл третьего закона становится более понятным, если учесть, что один и тот же цвет (в том числе и цвет смешиваемых компонентов) может быть получен различными способами. Например, смешиваемый компонент может быть получен, в свою очередь, смешиванием других компонентов.

Таблица значений некоторых цветов в числовой модели RGB

Цвет R G B
Красный (red)      
Зеленый (green)      
Синий (blue)      
Фуксин (magenta)      
Голубой (cyan)      
Желтый (yellow)      
Белый (white)      
Черный (black)      

Цветовая модель HSV

Модель HSB (Hue Saturation Brightness = Тон Насыщенность Яркость) построена на основе субъективного восприятия цвета человеком. Предложена в 1978 году. Эта модель тоже основана на цветах модели RGB, но любой цвет в ней определяется своим цветом (тоном), насыщенностью (т. е. добавлением к нему белой краски) и яркостью (т. е. добавлением к нему черной краски). Фактически любой цвет получается из спектрального добавлением серой краски. Эта модель аппаратно-зависимая и не соответствует восприятию человеческого глаза, так как глаз воспринимает спектральные цвета как цвета с разной яркостью (синий кажется более темным, чем красный), а в модели HSB им всем

 


приписывается яркость 100%.

Рис. 5. Модели HSB и HSV

H определяет частоту света и принимает значение от 0 до 360 градусов.

V или B: V - значение (принимает значения от 0 до 1) или B - яркость, определяющая уровень белого света (принимает значения от 0 до 100%). Являются высотой конуса.

S - определяет насыщенность цвета. Значение ее является радиусом конуса.

Рис. 6. Цветовой круг при S=1 и V=1 (B=100%)

В модели HSV (рис. 5) цвет описывается следующими параметрами: цветовой тон H (Hue), насыщенность S (Saturation), яркость, светлота V(Value). Значение H измеряется в градусах от 0 до 360, поскольку здесь цвета радуги располагаются по кругу в таком порядке: красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый. Значения S и V находятся в диапазоне (0…1).

Приведем примеры кодирования цветов для модели HSV. При S=0 (т. е. на оси V) - серые тона. Значение V=0 соответствует черному цвету. Белый цвет кодируется как S=0, V=1. Цвета, расположенные по кругу напротив друг друга, т. е. отличающиеся по H на 180 º, являются дополнительными. Задание цвета с помощью параметров HSV достаточно часто используется в графических системах, причем обычно показывается развертка конуса.

Цветовая модель HSV удобна для применения в тех графических редакторах, которые ориентированы не на обработку готовых изображений, а на их создание своими руками. Существуют такие программы, которые позволяют имитировать различные инструменты художника (кисти, перья, фломастеры, карандаши), материалы красок (акварель, гуашь, масло, тушь, уголь, пастель) и материалы полотна (холст, картон, рисовая бумага и пр.). Создавая собственное художественное произведение, удобно работать в модели HSV, а по окончании работы его можно преобразовать в модель RGB или CMYK, в зависимости от того, будет ли оно использоваться как экранная или печатная иллюстрация.

Существуют и другие цветовые модели, построенные аналогично HSV, например модели HLS (Hue, Lighting, Saturation) и HSB также использует цветовой конус.

Цветовая модель Lab

Модель Lab является аппаратно-независимой моделью, что отличает ее от описанных выше. Экспериментально доказано, что восприятие цвета зависит от наблюдателя (если вспомнить дальтоников, существует разница в возрастном восприятии цвета и т. д.) и условий наблюдения (в темноте все серое). Ученые из Международной Комиссии по Освещению (CIE=Commission Internationale de l'Eclairage) в 1931 г. они стандартизировали условия наблюдения цветов и исследовали восприятие цвета у большой группы людей. В результате были экспериментально определены базовые компоненты новой цветовой модели XYZ. Эта модель аппаратно независима, поскольку описывает цвета так, как они воспринимаются человеком, точнее "стандартным наблюдателем CIE". Ее приняли за стандарт. Цветовая модель Lab, использующаяся в компьютерной графике, является производной от цветовой модели XYZ. Название она получила от своих базовых компонентов L, a и b. Компонент L несет информацию о яркостях изображения, а компоненты а и b - о его цветах (т. е. a и b - хроматические компоненты). Компонент а изменяется от зеленого до красного, а b - от синего до желтого. Яркость в этой модели отделена от цвета, что удобно для регулирования контраста, резкости и т. д. Однако, будучи абстрактной и сильно математизированной эта модель остается пока что неудобной для практической работы.

 

 

Основные направления компьютерной графики

Компьютерная графика ( КГ ) – это отрасль знаний, представляющая комплекс аппаратных и программных средств, используемых для формирования, преобразования и выдачи информации в визуальной форме на средства отображения ЭВМ, а также КГ - совокупность методов и приемов для преобразования при помощи ЭВМ данных в графическое представление или графического представления в данные.

Конечным продуктом КГ является изображение (графическая информация). Изображение можно разделить на:

1. Рисуно к – графическая форма изображения, в основе которой лежит линия.

2. Чертеж – это контурное изображение проекции некоторых реально существующих или воображаемых объектов.

3. Картина – тоновое черно-белое или цветное изображение.

Самая важная функция компьютера – обработка информации. Особо можно выделить обработку информации, связанную с изображениями. Она разделяется на три основные направления: визуализация, обработка и распознавание изображений.

Визуализация создание изображения на основе описания (модели) некоторого объекта:

 

 

Существует большое количество методов и алгоритмов визуализации, которые различаются между собой в зависимости от того, что и как должно быть отображено: график функции, диаграмма, схема, карта или имитация трехмерной реальности – изображения сцен в компьютерных развлечениях, художественных фильмах, тренажерах, в системах архитектурного проектирования. Важными и связанными между собой факторами здесь являются: скорость изменения кадров, насыщенность сцены объектами, качество изображения, учет особенностей графического устройства.

Обработка изображений – это преобразование изображений, т. е. входными данными является изображение и результат – тоже изображение:

 

 

Примерами обработки изображений могут служить повышение контраста, четкости, коррекция цветов, редукция цветов, сглаживание, уменьшение шумов и т. д. В качестве материала обработки могут быть космические снимки, отсканированные изображения, радиолокационные, инфракрасные изображения и т. п. Задачей обработки изображений может быть как улучшение в зависимости от определенного критерия (реставрация, восстановление), так и специальное преобразование, кардинально изменяющее изображение. В последнем случае обработка изображений может быть промежуточным этапом для дальнейшего распознавания изображения. Например, перед распознаванием часто необходимо выделять контуры, создавать бинарное изображение, разделять исходное изображение по цветам. Методы обработки изображения могут существенно различаться в зависимости от того, каким путем оно получено: синтезировано системой КГ, получено в результате оцифровки черно-белой или цветной фотографии.

Основной задачей распознавания изображений является получение описания изображенных объектов. Методы и алгоритмы распознавания разрабатывались, прежде всего, для обеспечения зрения роботов и для систем специального назначения. Но в последнее время компьютерные системы распознавания изображений все чаще появляются в повседневной практике, например, офисные системы распознавания текстов или программы векторизации.

Цель распознавания может формулироваться по-разному: выделение отдельных элементов (например, букв текста на изображении документа или условных знаков на изображении карты), классификация изображения в целом (например, проверка, изображен ли определенный объект, или установление персоны по отпечаткам пальцев).

Методы классификации и выделения отдельных элементов могут быть взаимосвязаны. С одной стороны, классификация может быть выполнена на основе структурного анализа отдельных элементов объекта, с другой – для выделения отдельных элементов изображения можно использовать методы классификации.

Задача распознавания является обратной по отношению к визуализации:

 

 

Сферы применения компьютерной графики:

● САПР (системы автоматизированного проектирования);

● деловая графика (графическое представление данных);

● визуализация процессов и явлений в научных исследованиях (компьютерное графическое моделирование);

● медицина (компьютерная томография, УЗИ и т. д.);

● геодезия и картография (ГИС);

● полиграфия (схемы, плакаты, иллюстрации);

● сфера массовой информации (графика в Интернете, иллюстрации, фото);

● кинематография (спецэффекты, компьютерная мультипликация);

● быт (компьютерные игры, графические редакторы, фотоальбомы).

Столь широкое распространение компьютерная графика получила с появлением интерактивных графических систем.

Понятие " интерактивная компьютерная графика " (ИКГ) предполагает способность компьютерной системы создавать графику и вести диалог с человеком. В системе ИКГ пользователь воспринимает на дисплее изображение, представляющее некоторый сложный объект, и может вносить изменения в описание (модель) объекта. Такими изменениями могут быть ввод и редактирование отдельных элементов, задание числовых значений для любых параметров, различные операции по вводу информации на основе восприятия изображений человеком. В настоящее время почти любую программу можно считать системой интерактивной компьютерной графики. Достоинствами данной графики являются:

- наиболее естественные средства общения с ЭВМ;

- хорошо развитый двухмерный и трехмерный механизм распознавания образов позволяет очень быстро и эффективно воспринимать и обрабатывать различные виды данных;

- позволяет значительно расширить полосу пропускания при общении человека с ЭВМ за счет использования разумного сочетания текста, статических и динамических изображений по сравнению со случаями, когда можно работать только с текстами. Это расширение существенно влияет на возможность понимать данные, выявлять тенденции и визуализировать существующие или воображаемые объекты при обработке.

Исторически первыми интерактивными системами считаются системы автоматизированного проектирования (САПР), которые появились в 60-х годах XX века. Они используются во многих областях: машиностроение, электроника, проектирование самолетов и автомобилей, при разработке микроэлектронных интегральных схем, в архитектуре.

Все более популярными становятся геоинформационные системы (ГИС). Они используют методы и алгоритмы многих наук иинформационных технологий

: последние достижения технологий баз данных, в них заложены многие алгоритмы и методы математики, физики, геодезии, топологии, картографии, навигации и, конечно же, компьютерной графики. Системы типа ГИС зачастую требуют значительных мощностей компьютера как для работы с базами данных, так и для визуализации объектов.

Типичными для любой ГИС являются следующие операции: ввод и редактирование объектов с учетом их расположения на поверхности Земли; формирование разнообразных цифровых моделей и хранение их в базах данных; анализ множества объектов, расположенных на некоторой территории, с учетом пространственных, топологических отношений.

Важным этапом развития систем КГ являются системы виртуальной реальности (virtual reality). Наращивание мощностей компьютера, повышение реалистичности трехмерной графики, совершенствование способов диалога с человеком позволяют создавать иллюзию вхождения человека в виртуальное пространство, которое может быть моделью существующего или выдуманного пространства. Системы класса виртуальной реальности для диалога с компьютером обычно используют такие устройства, как шлем-дисплей, сенсоры на теле человека.

Широко используется КГ в кинематографии. Одним из первых примеров был фильм "Звездные войны", созданный с помощью суперкомпьютера Cray. До недавнего времени технологии компьютерной графики использовались для спецэффектов, создания изображений экзотических чудовищ, имитации стихийных бедствий и других элементов, которые являлись лишь фоном для игры живых актеров. В 2001 г. вышел на экраны полнометражный кинофильм "Финальная фантазия", в котором все, включая изображения людей, синтезировано компьютером – живые актеры только озвучили роли за кадром.

Важное место занимает компьютерная графика в Интернете. В этих целях совершенствуются методы передачи визуальной информации, разрабатываются новые графические форматы.

В современных компьютерных играх значительную роль играют анимация, реалистичность изображений, совершенство способов ввода-вывода информации. Следует отметить, что во многих игровых программах используются идеи и методы, разработанные для профессиональных компьютерных систем, таких как тренажеры для летчиков.


Поделиться с друзьями:

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.013 с.