Методы функциональной диагностики — КиберПедия 

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Методы функциональной диагностики

2017-06-20 880
Методы функциональной диагностики 0.00 из 5.00 0 оценок
Заказать работу

Методы функционального исследования системы внешнего дыхания имеют большое значение в комплексном обследовании больных, страдающих заболеваниями легких и бронхов. Все эти методы не позволяют диагностировать заболевание, которое привело к дыхательной недостаточности, однако дают возможность выявить ее наличие, нередко задолго до появления первых клинических симптомов, установить тип, характер и степень выраженности этой недостаточности, проследить

динамику изменения функций аппарата внешнего дыхания в процессе развития болезни и под влиянием лечения.

Определение показателей легочной вентиляции. Показатели легочной вентиляции не имеют строгих констант: в большинстве своем они не только определяются патологией легких и бронхов, но зависят также в значительной мере от конституции и физической тренировки, роста, массы тела, пола и возраста человека. Поэтому полученные данные оценивают по сравнению с так называемыми должными величинами, учитывающими все эти данные и являющимися нормой для следуемого лица. Должные величины высчитывают по номограммам и формулам, в основе которых лежит определение должного основного обмена.

Измерение легочных объемов. Наиболее распространенными, хотя и недостаточно точными показателями легочной вентиляции являются так называемые легочные объемы. Различают следующие легочные объемы.

Дыхательный объем (ДО) — объем воздуха, вдыхаемого и выдыхаемого при нормальном дыхнии, равный в среднем 500 мл (с колебаниями от 300 до 900 мл). Из него около 150 мл составляет

объем так называемого воздуха функционального мертвого пространства (ВФМП) вгортани, трахее, бронхах, который не принимает участия в газообмене. Однако не следует забывать, что ВФМП, смешиваясь с вдыхаемым воздухом, увлажняет и согревает его; в этом заключается физиологическая роль ВФМП.

Резервный объем выдоха (РОвыд) — объем воздуха, равный 1500—2000 мл, который человек может выдохнуть, если после нормального выдоха сделает максимальный выдох.

Резервный объем вдоха (РОвд) — объем воздуха, равный 1500—2000 мл, который человек может вдохнуть, если после обычного вдоха сделает максимальный вдох.

Жизненная емкость легких (ЖЕЛ), равная сумме резервных объемов вдоха и выдоха и дыхательного объема (в среднем 3700 мл), составляет тот объем воздуха, который человек в состоянии выдохнуть при самом глубоком выдохе после максимального вдоха. Одним из способов расчета должной ЖЕЛ является способ Антони, согласно которому величину должного основного обмена (рассчитывается по таблицам) умножают на эмпирически выведенный коэффициент 2,3. Отклонение от должной ЖЕЛ, вычисленной по этому расчету, не должно превышать ± 15%.

Остаточный объем (ОО), равный 1000—1500 мл, объем воздуха, остающегося в легких после максимального выдоха.

Общая (максимальная) емкость легких (ОЕЛ) является суммой дыхательного, резервных (вдох и выдох) и остаточного объемов и составляет 5000— 6000 мл.

Исследование легочных объемов позволяет оценить возможности компенсирования дыхательной недостаточности благодаря увеличению глубины дыхания за счет использования резервного и дополнительного легочных объемов.

ДО в норме составляет около 15% ЖЕЛ; РОвд и РОвыд—42—43% (при этом РОвд обычно несколько превышает РОвыд); ОО составляет приблизительно 33% от ЖЕЛ. У больных с обструктивной вентиляционной недостаточностью ЖЕЛ несколько уменьшается, но возрастает РОвыд и ОО за счет уменьшения РОвд. Так, ОО (особенно его отношения к ОЕЛ) увеличивается, достигая в ряде случаев 50% ОЕЛ, при эмфиземе легких, бронхиальной астме, в меньшей степени— в пожилом возрасте. У больных с рестриктивной вентиляционной недостаточностью также снижается ЖЕЛ за счет уменьшения РОвд, остаточный объем изменяется мало.

Спирография. Наиболее достоверные данные получают при спирографии (рис. 25). Кроме измерения легочных объемов, с помощью спирографа можно определить ряд дополнительных показателей вентиляции: дыхательный и минутный объемы вентиляции, максимальную вентиляцию легких, объем форсированного выдоха. Пользуясь спирографом, можно также определить все показатели для каждого легкого (с помощью бронхоскопа, подводя воздух раздельно из правого и левого главных бронхов — «раздельная бронхоспирография»). Наличие абсорбера для оксида углерода

(IV) позволяет установить поглощение кислорода легкими обследуемого за минуту.

При спирографии также определяют ОО. Для этой цели применяют спирограф с закрытой системой, имеющей поглотитель для СО2. Его заполняют чистым кислородом; обследуемый дышит в него в течение 10 мин, затем определяют остаточный объем с помощью расчета концентрации и количества азота, попавшего в спирограф из легких обследуемого.ВФМП определить сложно. Судить о его количестве можно из расчетов соотношения парциального давления СО2 в выдыхаемом воздухе и артериальной крови. Он увеличивается при наличии больших каверн и вентилируемых, но недостаточно снабжаемых кровью участков легких.

Исследование интенсивности легочной вентиляции

Минутный объем дыхания (МОД) определяют умножением дыхательного объема на частоту дыхания; в среднем он равен 5000 мл. Более точно его можно определить с помощью мешка Дугласа и по спирограммам.

Максимальная вентиляция легких {МВЛ, «предел дыхания») — количество воздуха, которое может провентилироваться легкими при максимальном напряжении дыхательной системы. Определяют спирометрией при максимально глубоком дыхании с частотой около 50 в минуту, в норме равно 80—200 л/мин. По А. Г. Дембо, должная МВЛ = ЖЕЛ •

Резерв дыхания (РД) определяют по формуле РД = МВЛ — МОД. В норме РД превышает МОДне менее чем в 15—20 раз. У здоровых лиц РД равен 85% МВЛ, при дыхательной недостаточности он уменьшается до 60—55% и ниже. Эта величина в значительной степени отражает функциональные возможности дыхательной системы здорового человека при значительной нагрузке или больного с патологией системы дыхания для компенсации значительной дыхательной недостаточности путем увеличения минутного объема дыхания. Всеэти пробы позволяют изучать состояние легочной вентиляции и ее резервы, необходимость в которых может возникнуть при выполнении тяжелой физической работы или при заболевании органов дыхания.

Исследование механики дыхательного акта. Позволяет определить изменение соотношения вдоха и выдоха, дыхательного усилия в разные фазы дыхания и прочие показатели. кспираторную форсированную жизненную емкость легких (ЭФЖЕЛ) исследуют по Вотчалу—Тиффно. Измерение проводят так же, как при определении ЖЕЛ, но при максимально быстром, форсированном выдохе. ЭФЖЕЛ у здоровых лиц оказывается на 8—11% (100—300 мл) меньше,

чем ЖЕЛ, в основном за счет увеличения сопротивления току воздуха в мелких бронхах. В случае повышения этого сопротивления (при бронхите, бронхоспазме, эмфиземе и др.) разница между ЭФЖЕЛ и ЖЕЛ возрастает до 1500 мл и более. Определяют также объем форсированного выдоха за 1 с (ФЖЕЛ), который у здоровых лиц равен в среднем 82,7% ЖЕЛ, и длительность форсированного выдоха до момента его резкого замедления; это исследование проводят только с помощью спирографии. Применение бронхолитических средств (например, теофедрина) во время определения ЭФЖЕЛ и различных вариантов этой пробы позволяет оценить значение бронхоспазма в возникновении дыхательной недостаточности и снижении указанных показателей: если после приема теофедрина полученные данные проб остаются значительно ниже нормальных, то бронхоспазм не

является причиной их снижения.Инспираторную форсированную жизненную емкость легких (ИФЖЕЛ) определяют при максимально быстром форсированном вдохе. ИФЖЕЛ не изменяется при не осложненной бронхитом

эмфиземе, но уменьшается при нарушении проходимости дыхательных путей.

Пневмотахометрия — метод измерения «пиковых» скоростей воздушного потока при форсированном вдохе и выдохе; позволяет оценить состояние бронхиальной проходимости.

Пневмотахография — метод измерения объемной скорости и давлений, возникающих в различные фазы дыхания (спокойного и форсированного). Проводится с помощью универсального

пневмотахографа. Принцип метода основан на регистрации в различных точках движения струи воздуха давлений, меняющихся в связи с дыхательным циклом. Пневмотахография позволяет определить объемную скорость воздушного потока во время вдоха и выдоха (в норме при спокойном дыхании она равна 300—500 мл/с, при форсированном — 5000—8000 мл/с), продолжительность фаз дыхательного цикла, МОД, внутриальвеолярное давление, сопротивление дыхательных путей движению струи воздуха, растяжимость легких и грудной стенки, работу дыхания и некоторые другие показатели.

Пробы на выявление явной или скрытой дыхательной недостаточности. Определение потребления кислорода и кислородного дефицита осуществляют методом спирографии с закрытой системой и поглощением СО2. При исследовании кислородного дефицита полученную спирограмму сравнивают со спирограммой, зарегистрированной в тех же условиях, но при заполнении спирометра кислородом; производят соответствующие расчеты.

Эргоспирография — метод, позволяющий определить количество работы, которое может совершить обследуемый без появления признаков дыхательной недостаточности, т. е. изучить резервы системы дыхания. Методом спирографии определяют потребление кислорода и кислородный дефицит у больного в спокойном состоянии и при выполнении им определенной физической нагруки на эргометре. О дыхательной недостаточности судят по наличию спирографического кислородного дефицита более чем 100 л/мин или скрытого кислородного дефицита более чем 20% (дыхание становится более спокойным при переключении дыхания воздухом на дыхание кислородом), а

также по изменению парциального давления кислорода и оксида углевода (IV) крови.

Исследование газов крови осуществляют следующим образом. Кровь получают из ранки от укола кожи нагретого пальца руки (доказано, что полученная в таких условиях капиллярная кровь по своему газовому составу аналогична артериальной), собирая ее сразу в мензурку под слой нагретого вазелинового масла во избежание окисления кислородом воздуха. Затем исследуют газовый состав крови на аппарате Ван-Слайка, где используется принцип вытеснения газов из связи с гемоглобином химическим путем в вакуумное пространство. Определяют следующие показатели: а) содержание кислорода в объемных единицах; б) кислородную емкость крови (т. е. количество кислорода, которое может связать единица данной крови); в) процент насыщения кислородом крови

(в норме 95); г) парциальное давление кислорода крови (в норме 90— 100 мм рт. ст.); д) содержание оксида углерода (IV) в объемных процентах в артериальной крови (в норме около 48); е) парциальное давление оксида углерода (IV) (в норме около 40 мм рт. ст.).

В последнее время парциальное напряжение газов в артериальной крови (РаО2 и РаСО2) определяют, пользуясь аппаратом «микро-Аструп» или другими методиками.

Определить кислородную насыщенность крови можно также методом оксигемометрии, принцип которой заключается в том, что датчик (фотоэлемент) накладывают на мочку уха больного и определяют показания шкалы прибора при дыхании воздухом, а затем чистым кислородом; значительное увеличение разницы показаний во втором случае свидетельствует о кислородной задолженности крови.

Определение скорости кровотока раздельно в малом и большом круге кровообращения. У больных с нарушением функции внешнего дыхания это также позволяет получить ценные данные для диагностики и прогноза.

Плевральная пункция

Плевральная пункция применяется для определения характера плевральной жидкости с целью уточнения диагноза, а также для удаления жидкости из плевральной полости и (при необходимости) последующего введения в нее лекарственных веществ. Во время пункции больной сидит на стуле, лицом к спинке, со скрещенными на груди руками. Перед пункцией производят обработку спиртовым раствором йода и местную анестезию предполагаемого места прокола. Пункцию делают по задней подмышечной линии в зоне максимальной тупости перкуторного звука, которую предварительно определяют перкуссией, обычно в седьмом или восьмом межреберье по верхнему краю нижележащего ребра, так как по нижнему краю проходят межреберные сосуды (рис. 26). Для

пробной пункции пользуются шприцем емкостью 10 мл с насаженной на него довольно толстой и длинной иглой, а для извлечения большого количества жидкости — аппаратом Потена или электроотсосом. При попадании иглы в плевральную полость появляется ощущение «свободного пространства»; иногда при проколе ощущается препятствие, что обычно связано с утолщением плевры. С диагностической целью берут 50—150 мл жидкости и направляют ее на физико-химическое, цитологическое и бактериологическое исследования. В случае скопления значительного количества жидкости в плевральной полости с лечебной целью удаляют 800—1200 мл. Удаление из плевральной полости большего количества жидкости приводит к быстрому смещению органов средостения в больную сторону и может сопровождаться коллапсом. После извлечения иглы место про-

кола смазывают 5% спиртовым раствором йода.

 


Поделиться с друзьями:

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.017 с.