Плод в отдельные периоды внутриутробного развития. — КиберПедия 

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Плод в отдельные периоды внутриутробного развития.

2017-06-19 554
Плод в отдельные периоды внутриутробного развития. 0.00 из 5.00 0 оценок
Заказать работу

Развитие эмбриона/плода. На 13-15-й день после оплодотворения из клеточных скоплений эктобласта и эндобласта, расположенных между амниотическим и желточным пузырьками, образуется зародышевый щиток (эмбрион). Происходит дифференцировка мезенхимы: часть клеток мезенхимы оттесняется на периферию - к трофобласту, часть скапливается вокруг амниотического и желточного пузырьков, а также около эмбриона (рис. 4.9). В результате этого зародышевый щиток дифференцируется в экто-, эндо- и мезодерму. Эти три зародышевых листка служат исходным материалом для формирования в дальнейшем всех органов и систем эмбриона.

Рис. 4.9. Развитие плодного яйца.1 - эктоплазматический пузырек (амнион); 2 - эндобластический пузырек (желточный мешок); 3 - зародышевый щиток; 4 - ворсины хориона; 5 - цитотрофобласт; 6 - лакуны с материнской кровью

 

Согласно теории системогенеза (П.К. Анохин) у плода в процессе его развития избирательно и ускоренно развиваются те функциональные системы, которые адаптируют организм к ус-ловиям внешней среды сразу же после его рождения.

Нервная система закладывается очень рано. Образование нервной трубки и мозговых пузырей отмечается уже в течение первых недель онтогенеза. Закрытие нервной трубки происходит к 4-5-й нед после оплодотворения (рис. 4.10). Из просвета нервной трубки формируются желудочки мозга и спинномозговой канал; практически одновременно происходит развитие мозжечка. Миелинизация ЦНС происходит во второй половине беременно-сти, начинаясь в продолговатом мозге и достигая полушарий к концу беременности.

Рис. 4.10. Закрытие нервной трубки

Функциональное созревание различных отделов ЦНС определяет поведенческие реакции эмбриона/плода. Первые двигательные рефлексы, обу-словленные формированием элементов рефлекторной дуги, хорошо видны при УЗИ с 7-8 нед беременности. На 16-й нед движения плода становятся координированными, на 21-й нед внутриутробного развития у плода возникают первые спонтанные сосательные движения. К рефлекторным реакциям следует отнести также дыхательные движения плода, которые способствуют притоку крови в полые вены и усилению работы сердца и хорошо видны при УЗИ. Показателем созревания ЦНС плода является становление цикла активность - покой к 32-й нед беременности. В период фазы покоя отмечается некоторое угнетение сердечной деятельности, двигательной и дыхательной активности.

К концу внутриутробного периода в основном заканчивается формирование важнейших отделов центральной и периферической нервной системы плода, хотя их функциональная зрелость достигается после рождения.

Эндокринная система. Гипоталамо-гипофизарная система плода начинает развиваться очень рано.

 

Продукция соматотропного гормона гипофиза плода начинается с 7-8 нед и постепенно нарастает до 20-24 нед гестации.

Фолликулостимулирующий гормон (ФСГ) синтезируется гипофизом плода с 13-й нед онтогенеза, лютеинизирующий гормон (ЛГ) - с 18-й, пролактин (ПЛ) - с 19-й. ФСГ и ЛГ важны для процессов полового диморфизма. С 23-й нед внутриутробного развития задняя доля гипофиза плода начинает синтезировать вазопрессин и окситоцин. Максимальный уровень окситоцина у плода обнаруживается в конце гестационного периода и в родах.

Гормоны женских (эстрогены) и мужских (тестостерон) гонад, которым принадлежит важная роль в процессах дифференцировки наружных и внутренних половых органов, образуются у плода в незначительном количестве.

Адренокортикотропный гормон (АКТГ) обнаруживается в гипофизе плода с 9-й нед гестации. АКТГ стимулирует функцию коркового вещества надпочечников с образованием кортизола и дегидроэпиандростерона. Кортизол играет важную роль в синтезе сурфактантной системы, способствуя созреванию легочной ткани. Дегидроэпиандростерон плода поступает в плаценту, где из него синтезируется эстриол. Содержание эстриола в крови матери отражает состояние не только плода, но и фетоплацентарной системы в целом, что имеет важное диагностическое значение.

Гипоталамо-гипофизарно-щитовидная система плода функционирует в значительной степени автономно, так как материнские гормоны (ТТГ, Т4 и Т3) не проходят через плаценту к плоду. Развитие щитовидной железы начинается рано: на 4-й нед она уже синтезирует тиреоглобулин, на 6-й нед начинают образовываться тиреоидные фолликулы, после 10-й нед железа начинает аккумулировать йод. Синтез тиреотропного гормона (ТТГ) гипофиза начинается на 12-й нед внутриутробной жизни, что сопровождается началом образования тироксина и трийодтиронина в щитовидной железе плода. Ти реоидные гормоны плода играют оченьважную роль в процессах роста и развития, особенно в оссификации скелета и зубов, а также в формировании нервной системы. При недостатке гормонов щитовидной железы замедляются созревание нейронов, синаптогенез, нарушается миграция нервных клеток.

 

Развитие поджелудочной железы у эмбриона человека начинается на 3-4-й нед онтогенеза. Инсулин плода играет роль гормона роста, а материнский инсулин обеспечивает надлежащий уровень глюкозы. Инсулин, образующийся в организме матери, не переходит через плаценту к плоду; инсулин плодового происхождения также не попадает в материнский кровоток, что обусловлено высокой молекулярной массой гормона.

Кроветворение. Первичный гемопоэз с образованием мегалобластов и мегалоцитов происходит в желточном мешке. В дальнейшем, с 5-6-й нед внутриутробного развития, желточное кроветворение сменяется печеночным (экстрамедуллярный гемопоэз), которое существует до 4-го месяца внутриутробного развития. После этого функция кроветворения переходит к костному мозгу и селезенке. Эритроциты в периферической крови плода определяются с 7-8-й нед онтогенеза, клетки миелоидного ряда - с 12-й, лимфоциты - с 16-й.

В крови зрелого плода эритроцитов больше, чем у новорожденного, что объясняется физиологическим гемолизом части эритроцитов после родоразрешения. Физиологическая эритремия обеспечивает бесперебойное снабжение плода кислородом. Этому способствует и повышенное сродство к кислороду фетального гемоглобина. В период внутриутробного развития наблюдается сдвиг кривой диссоциации оксигемоглобина слева направо, что означает снижение способности крови плода связывать кислород по мере прогрессирования беременности. Некоторое снижение диссоциации оксигемоглобина, наблюдаемое у плода в конце внутриутробного периода, в значительной степени компенсируется повышением концентрации гемоглобина крови по мере развития плода.

Сердечно-сосудистая система. Сердце эмбриона закладывается на 2-й нед онтогенеза в виде двух парных трубок, на 4-й нед эмбрионального развития венозный и артериальный отделы сердца увеличиваются, начинается формирование внутрисердечных перегородок. К 8-й нед жизни у зародыша уже имеется сформированное сердце с двумя предсердиями и двумя желудочками. В это же время формируются магистральные сосуды, несколько позже - периферическая сосудистая сеть. С помощью современных ультразвуковых приборов сердечную деятельность плода можно регистрировать с 4-5-й нед беременности.

 

На самых ранних стадиях развития (до 6 нед) сердечный ритм у зародыша замедленный. После формирования симпатической и парасимпатической иннервации частота сердечных сокращений (ЧСС) увеличивается, составляя к 9 нед беременности 170-180 в минуту. В последующем ЧСС снижается и со II триместра беременности в среднем составляет 120-160 в минуту. С помощью акушерского стетоскопа сердечную деятельность плода удается определить с 18-20-й нед беременности, а с помощью ЭКГ -

с 11-12 нед, при УЗИ - с 5-6 нед.

Во внутриутробном периоде кровообращение плода проходит три последовательные стадии: желточное, аллантоидное и плацентарное.

Желточный период кровообращения у зародыша человека продолжается от момента имплантации до 2-й нед жизни. Кислород и питательные вещества поступают к зародышу из первичных кровеносных сосудов желточного мешка. Помимо этого, снабжение зародыша питательными веществами и кислородом осуществляется непосредственно через клетки трофобласта, которые в этот период эмбриогенеза еще не содержат сосудов.

Аллантоидное кровоообращение функционирует до 15-16-й нед гестации. Аллантоис (выпячивание первичной кишки), несущий фетальные сосуды, подходит к трофобласту; фетальные сосуды врастают в бессосудистые ворсины трофобласта, вследствие чего хорион становится сосудистым. Установление аллантоидного кровообращения - качественно новый этап развития эмбриона, обеспечивающий более интенсивный транспорт кислорода и питательных веществ от матери к плоду.

Период плацентарного кровообращения начинается со II триместра беременности, когда рост плаценты опережает рост плода. В этот период происходят и дальнейшая дифференцировка основных структурных элементов плаценты. После 22 нед беременности рост плаценты несколько замедляется, отставая от темпов роста плода. К 36 нед беременности плацента достигает полной функциональной зрелости.

 

Газообмен между матерью и плодом происходит в межворсинчатом пространстве в терминальных ворсинах плаценты. Артериальная кровь доставляется в межворсинчатое пространство по материнским спиральным артериям (рис. 4.11).

Рис. 4.11. Строение зрелой плаценты (см. цветную вклейку).А - схема; Б - плодовая поверхность; В - материнская поверхность

После газообмена на поверхности ворсин обогащенная кислородом кровь возвращается к плоду по мелким венам, которые, собираясь в более крупные венозные стволы, впадают в вену пуповины. Вена пуповины, несущая артериальную кровь (насыщенную кислородом на 80%), в брюшной полости плода разделяется на воротную вену и венозный проток плода.

Венозный проток с богатой кислородом кровью и воротная вена, кровь которой, проходя через печень, частично дезоксигенируется, впадают в нижнюю полую вену. В нижней полой вене артериальная кровь плода смешивается с венозной кровью из нижних конечностей, печени и кишечника. Эта смешанная кровь поступает в правое предсердие, куда впадает и верхняя полая вена, несущая из верхней половины туловища плода чисто венозную кровь. Полного смешения этих двух потоков крови в правом предсердии не происходит благодаря клапанообразной складке (евстахиева заслонка) в нижней полой вене, которая направляет кровь к овальному отверстию (foramen ovale). Через овальное отверстие в межпредсердной перегородке кровь поступает в левые отделы сердца и далее в аорту. Венозная кровь, попавшая в правое предсердие из верхней полой вены, поступает в правый желудочек, а затем - в легочную артерию (рис. 4.12).

Рис. 4.12. Фетальное кровообращение (см. цветную вклейку)

Основная масса бедной кислородом крови из легочных артерий, минуя нефункционирующие легкие, через артериальный (боталлов) проток направляется в нисходящую дугу аорты ниже места отхождения больших сосудов, питающих кровью голову и верхнюю часть туловища плода. Благодаря этому голова и верхние отделы туловища плода получают более насыщенную кислородом кровь, чем нижняя половина туловища. Кровь нисходящей дуги аорты снабжает нижнюю половину туловища и нижние конечности.

 

Таким образом, высокое содержание кислорода в артериальной крови вены пуповины по мере прохождения от плаценты к органам и тканям плода постепенно снижается в результате смешивания с дезоксигенированной кровью. Все органы плода получают смешанную кровь, но при этом в наиболее благоприятных условиях находятся печень плода, а также голова и верхняя половина туловища. Значительно хуже снабжаются кислородом нижняя половина туловища и легкие.

Венозная кровь, снабдив все органы плода кислородом и питательными веществами, через ветви подвздошных артерий поступает в артерии пуповины и через них - в плаценту.

По мере прогрессирования беременности происходит постепенное сужение овального отверстия и уменьшение нижней полой вены, вследствие чего к концу беременности дисбаланс в распределении артериальной крови между нижней и верхней половинами туловища плода нивелируется.

Особенности кровообращения плода имеют значение не только с точки зрения снабжения его кислородом, но и для выведения двуокиси углерода и других продуктов обмена кратчайшим путем: аорта-артерии пуповины-плацента.

Система кровообращения плода связана с гемодинамикой плаценты и материнского организма. Это отчетливо видно при синдроме сдавления нижней полой вены, который может возникать со второй половины беременности. У женщины, лежащей на спине из-за сдавления увеличенной маткой нижней полой вены и частично аорты, происходит перераспределение крови: большая часть крови задерживается в нижней полой вене, результатом чего становится снижение артериального давления в верхней части туловища. У беременной возникает головокружение, возможно обморочное состояние. Сдавление нижней полой вены беременной маткой, приводя к нарушению кровообращения в ней, отражается и на состоянии плода, вызывая у него тахикардию, усиление двигательной активности.

 

После рождения ребенка плодовое кровообращение претерпевает ряд изменений. Происходит облитерация пупочных артерий, пупочных вен и венозного протока и, что особенно важно, закрываются артериальный проток и овальное окно. Вследствие закрытия овального отверстия правое и левое предсердия разобщаются, кровь из правого предсердия целиком поступает в правый желудочек и по легочным артериям попадает в начавшие функционировать легкие - устанавливается малый круг кровообращения.

Дыхательная система. На 4-й нед эмбрионального развития происходит закладка легких, бронхов и трахеи, на 5-й нед - деление бронхов на ветви. К 6-му мес внутриутробного развития бронхиальное дерево насчитывает 17 порядков ветвей, к моменту рождения - 27. С 26-й нед внутриутробного развития отмечается дифференцировка альвеолярного эпителия: клетки I типа представляют собой покровный эпителий альвеол, клетки II типа содержат гранулы и продуцируют особый липопротеид - сурфактант, который в дальнейшем при рождении способствует расправлению легочной ткани.

Во внутриутробном периоде плод совершает нерегулярные дыхательные движения, которые при УЗИ определяются с 11-й нед беременности. Частота дыхательных движений плода возрастает по мере увеличения гестационного возраста, составляя в III триместре 30-70 в минуту. Дыхательные движения плода способствуют притоку крови к сердцу плода, заглатыванию амниотической жидкости (до 550 мл/сут), что является одним из важных механизмов обмена околоплодных вод. В норме дыхательные движения плода осуществляются при закрытой голосовой щели, что препятствует попаданию околоплодных вод в легкие.

Мочеполовая система. Развитие мочеполовой системы происходит из пронефроса (предпочка), мезонефроса (первичная почка) и метанефроса (зачаток постоянной почки и мочеточника). Развитие половых органов начинается с гонад, которые формируются в 5 нед гестации в целомическом бугорке над мезонефросом. Превращение индифферентной гонады в яичники или семенники происходит с 6-9-й нед (стадия гонадного пола). Развитие гонад детерминируется генами, заключенными в половых хромосомах.

 

В процессе онтогенеза происходит разделение мочевой и половой систем: постоянная почка с мочеточником выполняет мочевыводящую функцию, а пронефрос и мезонефрос дифференцируются в яйцеводы у эмбрионов женского пола и в семявыносящие протоки у эмбрионов мужского пола для осуществления функции выведения половых клеток.

Постоянные почки (метанефрос) развиваются с 5-й нед после оплодо-творения. Из разрастаний метанефроса образуются мочеточники, лоханки, чашечки и прямые собирательные канальцы. Развитие почки начинается на 7-8-й нед гестации, на 14-й нед петля нефрона (Генле) становится функционально развитой, способной к экскреции мочи путем гломерулярной фильтрации. Ультразвуковая визуализация почек плода возможна уже в 10-12 нед беременности, когда их средний диаметр составляет 0,4 см (в этот период длина плода составляет 5,35 см). Нефрогенез продолжается до 32-34 нед гестации. Почки плода остаются относительно незрелыми на протяжении всего периода внутриутробной жизни: при отсутствии полноценной экскреторной функции они осуществляют клубочковую фильтрацию и канальцевую реабсорбцию.

Образование мочи начинается с ранних сроков развития. К концу I триместра при УЗИ практически всегда обнаруживается наполненный мочевой пузырь. По мере увеличения гестационного возраста плода увеличивается средняя скорость продукции мочи с 10 мл/ч в 30 нед до 27 мл/ч к концу беременности (до 650 мл/сут). Моча плода выделяется в амниотическую жидкость, откуда транс- и параплацентарным путем попадает в материнский кровоток, чему способствует относительно низкое осмотическое давление мочи плода. Из крови матери продукты метаболизма плода выделяются с ее мочой.

Иммунная система. Первые лимфоидные клетки появляются в печени на 5-й нед развития зародыша, с 8-9 нед источником активного лимфопоэза становится вилочковая железа, которая продуцирует Т-лимфоциты. В селезенке лимфоидная ткань появляется на 20-й нед, наиболее интенсивный лейкопоэз в этом органе отмечается на 5-м мес внутриутробного развития. С 11-12 нед после оплодотворения начинает функционировать костный мозг. Фагоцитарная активность лейкоцитов на протяжении всего периода внутриутробного развития остается низкой.

 

Приблизительно на сроке гестации 10-12 нед у плода появляются первые признаки синтеза иммуноглобулинов (IgМ, IgG, IgA), продукция которых постепенно возрастает с увеличением срока беременности.

При проникновении возбудителя инфекции у плода не возникает воспалительных реакций, инфекция нередко становится генерализованной. Это является следствием выраженного дефицита как гуморального, так и клеточного звеньев иммунитета.

Система гемостаза. У плода отмечается гипокоагуляция, а у матери -

физиологическая гиперкоагуляция.

Фибриноген у эмбриона определяется на 5-й нед онтогезеза, первые белки-прокоагулянты - на 12-й нед, когда кровь эмбриона приобретает способность к свертыванию. Концентрация факторов свертывания II, VII, IХ, Х, XI, XII, XIII у плода значительно ниже, чем у взрослого человека.

Кислотно-основное состояние крови (КОС). Физиологический метаболический ацидоз плода обусловлен накоплением в его организме недоокисленных продуктов обмена веществ и отражает особенности газообмена во внутриутробном периоде. Метаболический ацидоз плода не является патологическим состоянием, а свидетельствует о своеобразной физиологической адаптации к внутриутробной жизни.

На метаболический ацидоз у плода указывает значительное накопление кислых продуктов обмена веществ без повышения парциального давления СО2 (рСО2). Изменяются показатели буферной системы крови (снижение щелочных резервов).

Физиологический метаболический ацидоз обусловлен преобладанием в организме плода процессов анаэробного гликолиза, когда энергии выделяется меньше, чем при аэробном.

К сроку родов метаболический ацидоз у плода нарастает, что приводит к повышению возбудимости центральных структур регуляции дыхательной системы плода, включая бульбарный дыхательный центр. Таким образом, создаются предпосылки к первым внеутробным дыхательным движениям.

 

Поделиться с друзьями:

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.033 с.