Внешняя память и интерфейс ввода/вывода — КиберПедия 

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Внешняя память и интерфейс ввода/вывода

2017-06-13 324
Внешняя память и интерфейс ввода/вывода 0.00 из 5.00 0 оценок
Заказать работу

Микропроцессор TMS32020 поддерживает широкий диапазон интер­фейсных систем. Адресное пространство данных, программ и ввода/вы­вода обеспечивает сопряжение с памятью и внешними устройствами, что увеличивает возможности системы. Интерфейс локальной памяти состоит из:

· 16-ти разрядной шины данных (D0-D15);

· 16-ти разрядной шины адреса (A0-A15);

· адресных пространств данных, программ и ввода/вывода выбираемых сигналами (*DS, *PS и *IS);

· различных сигналов управления системой.

Сигнал R/*W управляет направлением передачи, а сигнал *STRB управляет передачей.

Пространство ввода/вывода содержит 16 портов для вводы и 16 портов для вывода. Эти порты обеспечивают полный 16-разрядный ин­терфейс со внешними устройствами по шине данных. Одноразовый ввод/вывод с помощью команд IN и OUT выполняется за два командных цикла; однако использование счетчика повторений снижает время од­ного обращения к порту до 1-го цикла.

Использование ввода/вывода упрощается тем, что ввод/ вывод осуществляется также, как и обращение к памяти. Устройства вво­да/вывода отображаются в адресном пространстве ввода/вывода, ис­пользуя внешние адреса процессора и шину данных, таким же образом, как память. При адресации внутренней памяти шина данных находится в третьем состоянии, а управляющие сигналы в пассивном состоянии (высоком).

Взаимодействие c памятью и устройствами ввода/вывода на раз­личных скоростях сопровождается сигналом READY. При связи с мед­ленными устройствами, TMS320C2x ждет, пока устройство не завершит свою работу и просигнализирует процессору об этом через линию REA­DY, после чего процессор продолжит работу.

 

Центральное арифметико-логическое устройство

Центральное арифметическо-логическое устройство (CALU) содер­жит 16-разрядный масштабирующий регистр сдвига, 16 x 16 парал­лельный умножитель, 32-разрядное арифметическо-логическое устройс­тво (ALU), 32-разрядный аккумулятор и несколько дополнительных сдвиговых регистров, расположенных как на выходе из умножителя, так и на выходе из аккумулятора.

Любая операция ALU выполняется в следующей последовательнос­ти:

  1. данные захватываются из RAM на шину данных,
  2. данные проходят через масштабирующий сдвиговый регистр и через ALU, в котором выполняются арифметические опера­ции,
  3. результат передается в аккумулятор.

Один вход в ALU всегда соединен с выходом аккумулятора, а второй может получать информацию либо из регистра произведения (PR) умножителя, либо загружаться из памяти через масштабирующий сдвиговый регистр.

 

Конвейерные операции

Конвейер команд состоит из последовательности операций обра­щения ко внешней шине, которые возникают в течении выполнения ко­манд. Конвейер "предвыборка-декодирование-выполнение" обычно неза­метен для пользователя, за исключением некоторых случаев, когда конвейер должен быть прерван (например, при ветвлении). Во время работы конвейера предвыборка, декодирование и выполнение команд независимы друг от друга. Это позволяет командам перекрываться. Так в течении одного цикла две или три команды могут быть активны, каждая на разных этапах работы. Поэтому получается двухуровневый конвейер для TMS32020 и трехуровневый для TMS320C25.

Количество уровней конвейера не всегда влияет на скорость вы­полнения команд. Большинство команд выполняется за одно и то же количество циклов вне зависимости от того, из какой памяти выбира­ются команды: внешней, внутренней RAM или внутренней ROM.

Добавочные аппаратные средства, имеющиеся на процессоре TMS320C25, позволяют расширить количество уровней конвейера до трех, что повышает производительность процессора. К этим средствам относятся счетчик предзахватов (PFC), 16-разрядный стек микровызо­вов (MCS), регистр команд (IR), и регистр очереди команд (QIR).

При трехуровневом конвейере PFC содержит адрес следующей ко­манды, которая должна быть предзахвачена. Как только предзахват осуществлен, команда загружается в IR. Если же IR хранит команду, которая еще не выполнена, то предзахваченная команда помещается в QIR. После этого PFC увеличивается на 1. Как только текущая коман­да будет выполнена, команда из QIR будет перегружена в IR, для дальнейшего исполнения.

Счетчик команд (PC) содержит адрес команды, которая должна быть выполнена следующей, и не используется для операций захвата.

Но обычно PC используется в качестве указателя на текущую позицию в программе. Содержимое PC увеличивается после каждой выполненной команды. Когда возникает прерывание или вызов подпрограммы, содер­жимое PC помещается в стек, чтобы в дальнейшем можно было выпол­нить возврат в нужное место программы.

Циклы предзахвата, декодирования и выполнения конвейера неза­висимы друг от друга, это позволяет перекрываться исполняемым ко­мандам во времени. В течении любого цикла три команды могут быть одновременно активны, каждая на разных стадиях завершения.

 


Поделиться с друзьями:

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.009 с.