Нагрев металла перед прокаткой — КиберПедия 

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Нагрев металла перед прокаткой

2017-06-13 1853
Нагрев металла перед прокаткой 0.00 из 5.00 0 оценок
Заказать работу

Нагрев металла перед прокаткой осуществляется с целью повышения его пластичности и уменьшения его сопротивления деформации. Нагрев является одной из важных и основных операций в процессе прокатки. Он должен обеспечить равномерное распределение температуры по сечению прокатываемого металла, его минимальное окисление и обезуглероживание.

Характер передачи тепла определяет способ нагрева металла. Различают два способа; прямой и косвенный. Если тепло аккумулируется непосредственно в самом металле, а температура окружающей среды остается ниже температуры металла, то такой способ называется прямым. Если тепло металлу передается за счет соприкосновения его поверхности с какой-либо средой (газообразной, жидкой, твердой), нагретой до более высокой температуры, то такой способ нагрева называется косвенным.

Передача тепла металлу при косвенном нагреве происходит за счет конвекции и излучения. Количество тепла, передаваемое излучением в нагревательных печах, достигает 80 % всего тепла. При нагреве металла происходит активное химическое взаимодействие его с окружающими газами, в результате чего поверхностные слои его окисляются и обезуглероживаются. Окисление поверхности металла называется угаром. При нагреве стали окисленный слой представляет собой окалину, которая образуется в результате диффузионного процесса окисления железа и примесей, входящих в состав стали. Окалина состоит из окислов железа в виде соединений Fe203, Fe304 и FeO, располагающихся в трех слоях. Наружный ее слой Fe203 - гематит составляет примерно 2% от общей толщины окалины, промежуточный слой Fe304 - магнетит примерно 18%, а внутренний FeO - вюстит - 80%.

Образование окалины при нагреве приводит к потере годного металла. При нормальной работе нагревательных устройств угар металла составляет 1-2% массы металла, а при неудовлетворительной их работе 4-5%. Если учесть, что в процессе прокатки металл нагревается несколько раз, то можно принять угар в среднем 3-4% от массы металла. Активное окалинообразование при нагреве стали начинается при температуре около 700 °С и возрастает особенно быстро при температурах выше 900 °С.

На величину угара, то есть на величину образования окалины, влияют:
- температура нагрева;
- атмосфера рабочего пространства нагревательного устройства;
- продолжительность нагрева;
- химический состав металла;
- форма и размеры нагреваемой заготовки.

На рисунке показано влияние температуры и продолжительности нагрева металла в печи на окалинообразование. Видно, что окисление металла тем больше, чем больше времени он находится в печи при высоких температурах, и тем меньше, чем больше скорость нагрева.
1 – влияние температуры в печи на окалинообразование;
2 - влияние продолжительности нагрева на окалинообразование.

При нагреве легированных сталей и сплавов окалинообразование снижается в результате наличия Cr, Ni, Al, Si и т.д. Эти легирующие компоненты образуют плотную пленку окислов, которая препятствует дальнейшему окислению металла.

На скорость окисления оказывает влияние состояние наружной поверхности металла. При наличии слоя окалины, образовавшегося в результате предыдущего нагрева, металл окисляется с меньшей скоростью, так как этот слой окалины предохраняет в какой-то степени металл от окисления. Отношение поверхности нагреваемого металла к его объему также оказывает влияние на окисление металла: чем больше это отношение, тем сильнее окисление металла.

Одновременно при нагреве металла происходит и обезуглероживание его поверхностного слоя, представляющее процесс взаимодействия печных газов с углеродом стали, приводящее к уменьшению содержания углерода в поверхностном слое металла.

Глубина обезуглероженного слоя зависит:
- от содержания углерода в стали;
- температуры нагрева;
- продолжительности нагрева.

Углеродистые стали с содержанием углерода до 0,30-0,40% почти не обезуглероживаются, а с содержанием углерода выше 0,40% процесс обезуглероживания протекает тем интенсивнее, чем больше содержание углерода. Повышение температуры и продолжительности нагрева также увеличивают глубину обезуглероженного слоя. Таким образом, на процесс обезуглероживания влияют те же факторы, что и на окалинообразование.

Повышение температуры металла при его нагреве, как правило, благоприятно влияет на процесс прокатки. Однако при нагреве выше определенной для данной стали температуры происходит рост зерна, который ведет к ослаблению связи между ними и тем самым к ухудшению механических свойств стали. Что приводит к образованию на металле трещин и рванин. Такое явление называется перегревом. Иногда свойства перегретой стали можно улучшить, подвергнув ее термической обработке. Сильный перегрев исправить нельзя.

При температурах нагрева, близких к точке плавления стали, внутрь ее проникает кислород, который окисляет зерна. В результате связь между зернами стали настолько ослабляется, что металл при прокатке разрушается. Это явление называется пережогом. Оно происходит тем легче, чем выше температура нагрева и чем больше окислительная атмосфера в печи. Явления перегрева и пережога чаше всего возможны при вынужденной задержке металла в печи. Чтобы избежать перегрева и пережога необходимо понижать температуру печи и уменьшать количество подаваемого воздуха.

При назначении режимов нагрева металла обычно исходят из следующих параметров: температуры и скорости нагрева, времени выдержки при постоянной температуре (томления). При прокатке металл нагревают до возможно высоких температур, так как в этом случае снижаются расход энергии, усилие деформации, износ инструмента. При назначении температуры нагрева, как правило, верхний предел температуры нагрева ограничивается явлениями перегрева и пережога и устанавливается на 100-150 °С ниже точки плавления, а нижний предел - температурой рекристаллизации, т.е. минимально допустимой температурой конца прокатки. У некоторых сталей и сплавов температурный интервал прокаткидостаточно узкий, ограниченный различными изменениями в структуре металла.

Скорость нагрева зависит от теплопроводности металла. Чем выше теплопроводность, тем выше скорость нагрева, и наоборот. Для сталей с низкой теплопроводностью нагрев со слишком большими скоростями может привести к образованию трещин в результате возникновения внутренних напряжений из-за перепада температур между поверхностями и внутренними слоями. Поэтому нагрев таких сталей следует вести медленно, особенно до 600-650 °С. При температуре нагрева выше 700 °С все стали можно нагревать с максимально возможной скоростью. Большая скорость нагреваобеспечивает не только высокую производительность нагревательных устройств, но и предотвращает образование некоторых дефектов.

После достижения заданной температуры нагрева с целью выравнивания температуры металла по его сечению его в течение определенного времени выдерживают в печи. Этот третий период нагрева улучшает качество нагреваемого металла, так как происходят некоторые структурные изменения, выравнивание химического состава в результате диффузии и соответствующее улучшение механических свойств, диффузионное удаление водорода, наличие которого в некоторых сталях приводит к образованию флокенов после прокатки.

В зависимости от технологии нагрева нагревательные устройства могут обеспечить одно-, двух-, трех- и многоступенчатый нагрев.

Одноступенчатый нагрев осуществляется при постоянной температуре печи или при постоянном тепловом потоке. Его применяют для нагрева листов, труб, заготовок, сутунок и одиночных горячих слитков.

При двухступенчатом нагреве на первой ступени осуществляется собственно нагрев, на второй - выдержка при постоянной температуре. Двухступенчатый нагрев применяется для нагрева горячего посада всех марок стали в двухзонных методических печах и холодного посада углеродистой стали в нагревательных колодцах.

Трехступенчатый нагрев состоит из первой ступени, на которой скорость нагрева поддерживается небольшой, на второй - ускоренный нагрев, и на третьей - томление при постоянной температуре. Этот режим применяют в трехзонных нагревательных печах, нагревательных колодцах и др.

Многоступенчатый нагрев применяется при термической обработке. Он состоит из ряда периодов нагрева, выдержки и охлаждения.

По режиму нагрева различают камерные и методические печи. В рабочем пространстве камерной печи температура одинакова. В методической печи температура изменяется по длине печи.

По способу загрузки и выгрузки различаются печи периодического и непрерывного действия. В печах периодического действия металл в процессе нагрева остается неподвижным. В печах непрерывного действия нагреваемый металл перемешается вдоль печи.

По типу источников тепла печи разделяются на электрические (индукционные, сопротивления) и пламенные (газовые и др.).

По способу использования тепла продуктов сгорания печи делятся на рекуперативные и регенеративные. Нагревательные колодцы применяют для нагрева слитков и бывают регенеративные, рекуперативные и электрические. Регенеративные и рекуперативные колодцы называются так потому, что в них используются регенераторы и рекуператоры - специальные устройства (насадки, трубы) для подогрева воздуха (до 800-850 °С) и газа (до 300-350 °С) за счет частичного использования тепла отходящих продуктов горения. Слитки нагревают в вертикальном положении, что предотвращает опасность смешения усадочной раковины и устраняет их кантовку. Большая часть поверхности слитков омывается продуктами сгорания и получает тепло излучения от кладки, что обеспечивает равномерный и быстрый нагрев.

В настоящее время предпочтение отдается рекуперативным нагревательным колодцам с отоплением из центра подины или с отоплением одной верхней горелкой, которые характеризуются, высоким уровнем и качеством нагрева, достаточно простой конструкцией, компактностью. Каждая группа колодцев состоит из четырех камер. Годовая производительность одной группы составляет 250000 т нагретого металла в год. Угар металла в рекуперативных нагревательных колодцах достигает 2,5-3 % от массы нагревательных слитков.

Для нагрева блюмов, слябов и заготовок перед прокаткой используются методические нагревательные печи непрерывного действия различных типов и конструкций. Современные печи бывают двух-, трех- и многозонными.

Наиболее важными классификационными признаками методических печей являются:
- температурный режим по длине печи;
- характер нагрева металла;
- способ выдачи металла из печи (боковая или торцовая выдача).

Нагреваемый металл в методической печи, перемещаясь от окна загрузки к окну выдачи, проходит последовательно зоны с различной температурой, соответствующей заданному режиму нагрева. По мере продвижения металл отбирает тепло у печных газов, движущихся ему навстречу, и постепенно (методически) нагревается. Печные газы, отдавая тепло металлу, в конце печи через соответствующие каналы попадают в регенераторы или рекуператоры и в боров, а через него в дымовую трубу. В I зоне - методической происходит нагрев до невысоких температур, во II зоне - сварочной - нагрев до температуры обработки, а в томильной зоне III - выдержка.

По способу перемещения нагреваемых заготовок методические печи разделяются на толкателъные, с шагающим подамили балками и с вращающимся подом.

В толкательных печах заготовки, подаваемые в рабочую камеру толкателем заполняют весь пол, соприкасаясь друг с другом. По мере заталкивания новой заготовки вся масса нагреваемого металла продвигается к окну выдачи по водоохлаждаемым глиссажным трубам, и очередная заготовка по наклонным направляющим падает на приемный рольганг.

Принцип перемещения металла в печах с шагающим подом (балками) иной. Под печи состоит из подвижных (шагающих) и неподвижных балок. Шагающие балки поднимают заготовки, затем совершают движение вперед и опускают их на неподвижные балки. После этого подвижные балки возвращаются в исходное положение. Такое движение повторяется многократно. При этом заготовки, лежащие на шагающих балках с зазорами, перемещаются вдоль печи. По сравнению с толкательными печи с шагающим подом (балками) имеют следующие преимущества:
- сокращение продолжительности нагрева и повышение его равномерности благодаря расположению заготовок на балках с зазорами и тем самым возможности обогрева их с трех или четырех сторон;
- более легкое освобождение печи от металла в случае аварийных ситуаций;
- возможность нагрева заготовок любой формы поперечного сечения;
- отсутствие ограничений печи по длине и ширине;
- лучшие технические показатели работы печи.

Для нагрева заготовок при поштучной прокатке тонких листов применяют печи с вращающимся подом или карусельные. Заготовки укладываются через боковое окно загрузки на под печи, а обогрев печи осуществляется при помощи горелок, расположенных по окружности печи с внутренней и наружной сторон. По мере вращения пода на полный оборот заготовка нагревается до необходимой температуры и перемещается к боковому окну выдачи. Продолжительность нагрева определяется скоростью движения пода и длиной окружности печи.

Прогрессивным способом нагрева является индукционный нагрев. Металл, перемещаясь при помощи толкателя через индуктор, нагревается за счет возникающих в нем вихревых токов (токи Фуко), создаваемых магнитным полем индуктора.

Индукционный нагрев происходит быстро, экономично, с точной выдержкой заданной температуры.

Электроконтактный способ нагрева обеспечивает равномерное распределение температуры по поперечному сечению и высокую скорость нагрева. Металл при этом способе нагрева нагревается в 30-50 раз быстрее, чем при топливном нагреве. После нагрева практически не образуются окалина и обезуглероженный слой.

Дефекты нагрева

При нагреве металла в пламенных печах происходят процессы, которые оказывают влияние на дальнейшую обработку и качество металла. Состав печной атмосферы является главным фактором, влияющим на качество нагрева металла. В результате нагрева поверхность металла окисляется и обезуглероживается.

При окислении металла на поверхности заготовки образуется окалина, которая ухудшает качество поверхности и уменьшает линейные размеры заготовки. Поэтому размеры заготовок, подвергаемых нагреву, должны иметь припуск, учитывающий потери металла на угар (окалина).

При нагреве под обработку давлением припуски составляют 2—5%, при термической обработке 0,5—2%, а в общем цикле горячей обработки достигают.7—8%. Из приведенных цифр видно, что потери металла на угар составляют значительную величину.

При температурах 1150—1350°С вместе с процессом окисления металла происходит процесс его интенсивного обезуглероживания, т. е. снижения содержания углерода на поверхности заготовки. Обезуглероживание изменяет механические свойства поверхности нагреваемого металла. С повышением содержания углерода в стали обезуглероживание увеличивается. Инструментальная сталь при обезуглероживании становится мягкой, а инструмент из такой стали — нестойким.

Перегрев приводит к образованию большой величины зерна стали и является исправимым браком, который устраняют повторной термообработкой. Пластические свойства стали в результате перегрева ухудшаются и при деформировании в ней могут возникать трещины.

Если перегретый металл продолжать нагревать в печи длительное время при высоких температурах, то произойдет пережог — окисление границ зерен. Пережог является неисправимым браком. Пережженный металл идет на переплавку.

Для предупреждения указанных дефектов при нагреве металла необходимо соблюдать следующие условия: сжигать топливо с минимально возможным количеством воздуха, что приводит к уменьшению количества свободного кислорода в составе печных газов; размещать в печи заготовки так, чтобы они омывались печными газами, а факелы пламени горелок или форсунок не были направлены на заготовки.

Интервалгорячей пластической деформации 1180 - 850 С. Пригорячей пластической деформации температура начала прокатки, ковки и других операций должна обеспечивать возможно более полное превращение аустенита в б-феррит во избежание образования трещин или рванин. Присутствие аустенита в стали в момент пластической деформации способствует возникновению дефектов вследствие различия фазовых составляющих по физическим свойствам, а также прочности и пластичности. По данным А. А. Бабакова [70], необходимо, чтобы в начале горячей пластической деформации сталь содержала не более 8 - 10 %, а в конце ее 25 - 30 % аустенита. Особенно важно соблюдать эти условия при горячей прокатке на непрерывных станах и горячей прошивке труб

 

4. Типы прокатных клетей, применяющиеся в составе толстолистовых станов, их характеристика.


Поделиться с друзьями:

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.025 с.