Иммуноферментный анализ: основы метода. Гомогенный и гетерогенный иммуноферментный анализ. — КиберПедия 

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Иммуноферментный анализ: основы метода. Гомогенный и гетерогенный иммуноферментный анализ.

2017-06-13 2578
Иммуноферментный анализ: основы метода. Гомогенный и гетерогенный иммуноферментный анализ. 4.67 из 5.00 3 оценки
Заказать работу

Иммуноферментный анализ — лабораторный иммунологический метод качественного определения и количественного измерения антигенов и антител. Различают несколько десятков модификаций ИФА. Наибольшее распространение получил твердофазный гетерогенный иммунный анализ - ELISA (enzyme linked immunosorbent assay).

В основе метода иммуноферментного анализа (ИФА) лежит принцип специфического взаимодействия между антигеном и соответствующим ему антителом. Выявление образовавшегося комплекса проводят с использованием так называемого конъюгата, который представляет собой анти-антитело, соединённое с ферментной меткой (обычно используют пероксидазу хрена либо другие пероксидазы).

Конъюгат может быть получен с использованием поликлональных антивидовых антител (например, кроличьи антитела против иммуноглобулинов человека) или моноклональных антител, направленных против человеческих иммуноглобулинов определённого класса (M, G, А).

В зависимости от того, какие антитела использованы, тест-система будет выявлять в исследуемом образце или специфические антитела независимо от их класса, или антитела лишь определённого класса (например, только иммуноглобулин G или только иммуноглобулин M).

Методы иммуноферментного анализа. Первичным процессом в иммуноферментном (или иммунохимическом) анализе является стадия «узнавания» анализируемого соединения специфическим к нему антителом. Так как процесс образования иммунохимических комплексов происходит в строго количественном соотношении, обусловленном аффинностью, концентрациями компонентов и условиями реакции, то достаточным для определения исходной концентрации анализируемого соединения является количественная оценка образовавшихся иммунных комплексов. Для такой оценки возможно либо прямое определение концентрации образующихся иммунокомплексов (тип 1), либо количественная оценка оставшихся свободными мест специфического связывания (тип 2). Второй общей стадией любого метода иммуноферментного анализа является формирование связи меченного ферментом соединения со специфическим комплексом или свободными центрами связывания. И наконец, заключительным обязательным процессом в иммуноферментном анализе является трансформация ферментной метки в соответствующий сигнал, измеряемый каким-либо физико-химическим методом (спектрофотометрическим, флуориметрическим, люминесцентным и т.д.), что достигается путем измерения скорости превращения субстрата или количества продукта, образующегося за фиксированный промежуток времени.

Принимая во внимание вышеописанные подходы для определения специфических комплексов, дальнейшую классификацию методов иммуноферментного анализа, можно осуществить по типу реагентов, используемых на первой стадии анализа. Если на первой стадии в системе присутствуют только анализируемоле соединение и соответствующие ему центры связывания (антиген и специфические анатитела), то метод является неконкурентным. Для неконкурентного анализа типа 1 оптимальным является соотношение компонентов, при котором концентрация центров связывания значительно превышает концентрацию определяемого соединения. Необходимым условием для неконкурентного анализа типа 2 является соблюдение соотношения избытка или сравнимой концентрации определяемого соединения (антигена) и мест специфического связывания, так как в этом случае определяется разность общего числа мест связывания и числа образовавшихся иммунных комплексов. Если на первой стадии анализа в системе одновременно присутствуют анализируемое соединение и его аналог (меченное ферментом анализируемое соединение или анализируемое соединение, иммобилизованное на твердой фазе), конкурирующие за имеющиеся в относительном недостатке центры специфического связывания, то метод является конкурентным. Необходимым условием конкурентного метода является недостаток центров специфического связывания по отношению к суммарной концентрации анализируемого соединения и его аналога.

Следующим принципом классификации методов иммуноферментного анализа является их разделение по типу проводимых на каждой из иммунохимических стадий реакций. В соответствии с этим все методы можно разделить на две группы – гомогенные и гетерогенные.

Гетерогенные методы иммуноферментного анализа. Гетерогенный иммуноферментный анализ объединяет методы, в которых анализ проводится в двухфазной системе, при этом разделение на фазы может происходить на любой стадии определения. В целях удобства классификации целесообразно проводить разделение гетерогенных методов по характеру проведения первой стадии «узнавания», которая является определяющей для всего анализа. Если на первой стадии антиген или антитело используют в иммобилизованном состоянии и формирование специфического иммунокомплекса проходит на твердой фазе, то метод относится к твердофазным (англ. solid phase assay). Если же на первой стадии анализа образование специфических иммунных комплексов происходит в растворе, а лишь затем для целей разделения используют твердую фазу с иммобилизованным реагентом, то такие методы целесообразно классифицировать как гомогенно-гетерогенные.

Многообразие методов гетерогенного иммуноферментного анализа, относящихся к типам 1 и 2, обусловлено возможностью введения ферментной метки как в молекулу антигена, так и молекулу антитела. Кроме того, для конкретной схемы анализа определяющим является, какой из реагентов – антитело или антиген, использован в иммобилизованном виде для разделения иммунохимических комплексов от несвязавшихся компонентов.

В качестве примера гетерогенного неконкурентного метода проведения иммуноферментного анализа приведем одну из самых распространенных схем иммуноферментного анализа белков (поливалентных антиегенов), основанную на использовании пары антител различной антигенной специфичности, одно из которых иммобилизовано на поверхности твердого носителя, а второе конъюгировано с ферментной меткой (например, пероксидазой хрена). Анализ проводят следующим образом. В лунки полистирольного планшета с сорбированными антителами вносят анализируемый образец, инкубируют в течение 1 часа, при этом анализируемый антиген образует вступает в реакцию с антителами и образует иммунокомплекс на поверхности лунок. Планшет отмывают от несвязавшихся компонентов и добавляют меченные ферментом антитела. После вторичной инкубации и удаления избытка конъюгата антител с ферментом определяют ферментативную активность носителя, которая пропорциональна начальной концентрации исследуемого антигена. На стадии выявления специфического иммунокомплекса антиген оказывается как бы зажатым между молекулами иммобилизованных и меченых антител, что послужило поводом для широкого распространения в литературе названия «сэндвич»-метод (англ. sandwich). Часто в литературе встречается и другое название двухцентровой метод (англ. two-site assay). Схема может быть использована для анализа только тех антигенов, на поверхности которых существуют, по крайней мере две расположенные далеко друг от друга антигенные детерминанты, а для определения большого числа моновалентных антигенов (например, низкомолекулярные гормоны, лекарственные соединения, пестициды) метод неприемлем.

Конкурентный твердофазный анализ низкомолекулярных антигенов может быть реализован по следующей схеме. К иммобилизованным на носителе антителам добавляют раствор, содержащий анализируемый антиген и фиксированную концентрацию конъюгата антигена с ферментом. После проведения инкубации носитель отмывают от несвязавшихся свободного и меченого антигена и регистрируют ферментативную активность на носителе, которая обратно пропорциональна концентрации определяемого антигена.

Конкурентные твенрдофазные методы обладают меньшей чувствительностью по сравнению с неконкурентными. Предел обнаружения различных соединений для них ограничен как чувствительностью регистрации ферментной метки, так и аффинностью антител, в то время, как для неконкурентных методов, при отсутствии неспецифических взаимодействий, - только чувствительностью определения фермента. Поэтому для достижения высокой чувствительности анализа конкурентным методом необходимо использовать высокоаффинные антитела.

Гомогенные методы иммуноферментного анализа. К гомогенным относятся методы, осуществляемые в однофазной системе, и не требующие стадии механического разделения образовавшихся комплексов. Во всех схемах проведения гомогенного иммуноферментного анализа регистрируется концентрация не образующегося специфического комплекса антитело-антиген, а оставшихся свободными центров специфического связывания. Однако, в противоположность гетерогенным схемам, наблюдаемая ферментативная активность, соответствующая концентрации незанятых мест специфического связывания, может как уменьшаться, так и увеличиваться, что обусловлено различной природой воздействия связывания лигандов на ферментнативную активность. Введение метки в молекулу антигена является одним из наиболее распространенных подходов в гомогенных методах иммуноферментного анализа. Все гомогенные методы относятся к конкурентным и основаны на одновременном взаимодействии с антителами анализируемого и меченого антигенов. После образования в растворе соответствующего иммунохимического комплекса проводят измерение ферментативной активности, которая пропорциональна концентрации свободного или связанного меченого лиганда.

Одним из распространенных методов является EMIT-анализ (enzyme multiplied immunoassay technique), основанный на изменении активности ферментной метки в конъюгате фермент-антиген при образовании комплекса с антителами, происходящем в результате конформационных перестроек в молекуле фермента или стерическом исключении доступности молекулы субстрата к активному центру фермента при комплексообразовании конъюгата с антителами. Достоинствами гомогенных методов является значительное сокращение времени проведения анализа (несколько минут), недостатками – меньшая чувствительность и возможность влияния состава анализируемого образца на результаты анализа.

Существует несколько методов постановки реакции, однако в настоящее время наиболее часто для выявления специфических антител используются следующая схема (т. н. сэндвич-метод ИФА):

На лунках тест-планшета зафиксирован антиген возбудителя, который инкубируется с испытуемой сывороткой или плазмой крови. При наличии в них специфических антител происходит связывание их с образованием комплекса антиген-антитело.

В дальнейшем, при инкубации этого комплекса с конъюгатом, происходит присоединение анти-антител к имеющимся комплексам антиген-антитело. Ферментативная реакция (цветная реакция) проходит в присутствии перекиси водорода и субстрата, представленного неокрашенным соединением, которое в процессе пероксидазной реакции окисляется до окрашенного продукта реакции на заключительном этапе проведения исследования. Интенсивность окрашивания зависит от количества выявленных специфических антител.

Результат оценивается спектрофотометрически или визуально. По такому принципу построена большое количество тест-систем для иммуноферментной диагностики различных инфекций: ВИЧ-инфекция, вирусные гепатиты, цитомегаловирусная, герпесная, токсоплазменная и другие инфекции.

Для серодиагностики используются 96 луночные полистирольные планшеты, на стенках ячеек которых заранее адсорбируется антиген. Исследуемая сыворотка вносится в ячейку планшета. При этом гомологичные антигену антитела прикрепляются к нему. Не прикрепившиеся антитела удаляются промыванием. Далее в ячейки вносят антитела против иммуноглобулинов (антител) человека, меченные ферментом. Если в исследуемой сыворотке присутствовали определяемые антитела, то они на этом этапе выступят в роли антигенов, с которыми прореагируют меченные антитела. Добавление после промывки хромогенного вещества (красителя) позволит учесть реакцию по развивающемуся окрашиванию в ячейках. Интенсивность окраски при этом пропорциональна количеству фермента, а следовательно количеству антител. При измерении оптическую плотности (ОП) жидкости в ячейке и сравнивании ее с контрольным образцом подсчитывается концентрация антител в единицах объема. Наиболее часто применяется подсчет результатов в единицах оптической плотности. Надо учитывать, что для каждой тест-системы есть свои показатели учета результатов и показатели нормы и патологии на которые надо ориентироваться при интерпретации результатов.

Однако следует отметить, что иммуноферментный анализ может давать и ложные результаты. Ложноположительные могут возникнуть за счет ревматоидного фактора, представляющего собой иммуноглобулин M против собственных иммуноглобулинов G человека; за счёт антител, образующихся при различных системных заболеваниях, нарушениях обмена или приёме лекарственных препаратов; у новорожденных такие ложноположительные реакции могут возникать за счёт образования в организме ребёнка M-антител к иммуноглобулину G матери. Ложноотрицательные результаты реакции обусловлены конкуренцией между иммуноглобулинами М и G, а также техническими ошибками при постановке реакции.

В зависимости от того, какие антигены используются, все иммуноферментные тест-системы для выявления антител подразделяются на:

1. Лизатные — в которых используется смесь нативных антигенов (лизированный или обработанный ультразвуком возбудитель инфекции, полученный в культуре);

2. Рекомбинантные — в которых используются полученные генно-инженерным способом белки-аналоги определенных белковых антигенов возбудителя;

3. Пептидные — использующие химически синтезированные фрагменты белков.

Общее направление развития ИФА-диагностикумов — это направление от лизатных тест-систем, которые принято называть тест-системами первого поколения, к рекомбинантным и пептидным.

Технология получения рекомбинантных белков позволяет получить в достаточно чистом виде аналог любого отдельного антигена.

Для создания высококачественной рекомбинантной тест-системы необходимо из всего антигенного многообразия возбудителя выбрать антигены, которые были бы высокоиммуногенными (то есть, в организме инфицированного человека должны вырабатываться антитела к этим антигенам в достаточно большом количестве) и высокоспецифичными (то есть, характерными лишь для данного возбудителя и не дающими перекрёстных реакций с антителами другой природы).

Кроме того, большое значение имеет качество очистки рекомбинантных белков. В идеальном случае возможно получение рекомбинантной тест-системы практически со 100%-ной специфичностью при высокой чувствительности.

На практике этого не всегда удаётся достичь, однако специфичность лучших рекомбинантных тест-систем приближается к 100 %.

Таким образом, за счёт несомненных преимуществ иммуноферментного анализа: удобства в работе, быстроты, объективности за счет автоматизации учёта результатов, возможности исследования иммуноглобулинов различных классов (что важно для ранней диагностики заболеваний и их прогноза) в настоящее время является одним из основных методов лабораторной диагностики.

В основном в современной венерологии ИФА применяется для диагностики сифилиса (в комплексе с другими реакциями), ВИЧ-инфекции, вирусных гепатитов. Имеет ограниченное значение для диагностики хламидийной инфекции, цитомегаловирусной инфекции и других герпетических инфекций. Метод ИФА используется также для определения антител при различных инфекционных заболеваниях, уровня гормонов, аутоантител и различных маркеров онкологических заболеваний.

 

20. Радиоиммунный анализ: принципы, вид, основные этапы исследования, приборы. Применение в КДЛ.

Радиоиммунный анализ (РИА), также радиоиммунологический или изотопный иммунологический анализ, (англ. Radioimmunoassay, RIA) — метод количественного определения биологически активных веществ в биологических жидкостях, основанный на конкурентном связывании искомых стабильных и аналогичных им меченных радионуклидом веществ со специфическими связывающими системами (чаще всего с АТ), с последующей детекцией на специальных счетчиках — радиоспектрометрах.

Впервые метод был разработан Соломоном Берсоном и Розалин Сасмен Ялоу в 1950-х годах. С помощью этого метода они изучали клиренс инсулина у больных диабетом. Р. Ялоу получила за это Нобелевскую премию в 1977 году.

Для метки антител или антигенов чаще всего используется изотоп йода 125I, который имеет период полураспада 60 дней и высокую удельную радиоактивность.

В связи с тем, что меченый антиген добавляют в определенном количестве, можно определить часть вещества, которая связалась с антителами, и часть, оставшуюся несвязанной в результате конкуренции с выявляемым немеченым антигеном. Исследование выполняют in vitro. Для Р. а. выпускают стандартные наборы реагентов, каждый из которых предназначен для определения концентрации какого-либо одного вещества. Исследование проводят в несколько этапов: смешивают биологический материал с реагентами, инкубируют смесь в течение нескольких часов, разделяют свободное и связанное радиоактивное вещество, осуществляют радиометрию проб, рассчитывают результаты. Метод отличается высокой чувствительностью, его можно использовать в диагностике заболеваний сердечно-сосудистой, эндокринный и других систем, для установления причин бесплодия, нарушения развития плода, в онкологии для определения маркеров опухолей и контроля за эффективностью лечения, для определения концентрации в крови иммуноглобулинов, ферментов и лекарственных веществ. В ряде случаев исследования выполняют на фоне нагрузочных функциональных проб (например, определение содержания инсулина в сыворотке крови на фоне пробы на толерантность к глюкозе) либо в динамике (например, определение в крови половых гормонов на протяжении менструального цикла).

Радиоиммунный анализ обладает высокой чувствительностью и специфичностью. Так, например, с помощью коммерческого набора фирмы “ЭББОТТ” — Австрия II-I125 удается выявлять HBsAg в концентрациях до 0,1 нг/мл. К преимуществам метода можно отнести возможность стандартизации и автоматизации метода с получением ответов в цифровом выражении. Недостатком метода являются ограничения, определяемые режимом работы с радиоактивным материалом, и относительно короткий срок годности диагностического набора, что связано с распадом радиоактивной метки.

Диагностические наборы для выявления различных антигенов вирусов гепатитов А, В и D и антител к ним выпускаются фирмой “Изотоп” (Ташкент) и некоторыми зарубежными фирмами (например, фирмой “ЭББОТТ”). В качестве твердой фазы применяются полистироловые шарики (“ЭББОТТ”) или пробирки (“Изотоп”). Для метки антител или антигенов чаще всего используется изотоп I125, который имеет период полураспада 60 дней и высокую удельную радиоактивность. Измерение радиоактивной метки, т. е. излучения, проводится на специальных счетчиках — радиоспектрометрах. Подсчет радиоактивных импульсов как в контрольных, так и исследуемых образцах проводится в единое фиксированное время, обычно в течение 1 минуты. При анализе результатов реакции необходимо учитывать наличие фона радиоактивности, который может влиять на конечный результат реакции. Причинами повышенного фона могут быть: загрязнение контейнера или гнезда для пробы; неправильная настройка прибора; наличие источника сильного излучения вблизи прибора.

Для подтверждения положительного результата, полученного при первичном скрининге образцов, рекомендуется повторное исследование РИА или в альтернативном тесте. При обнаружении HBsAg необходимо проводить конфирмационный тест.

Радиоиммунный анализ - высокочувствительный метод, основанный на реакции антиген-антитело, один из компонентов которой несет радиоактивную метку. Метод позволяет обнаруживать как антигены, так и антитела и определять их концентрацию в исследуемой пробе.

Метод применяют для выявления антигенов микробов, определения гормонов, ферментов, лекарственных веществ и иммуноглобулинов. Является наиболее чувствительным методом определения антигенов и антител, используется для определения гормонов, лекарственных веществ и антибиотиков, для диагностики бактериальных, вирусных, риккетсиозных, протозойных заболеваний, исследования белков крови, тканевых антигенов.

 

Хроматография: теоретические основы, принцип метода. Сорбенты и элюенты для хроматографического анализа. Методы проявления хроматограмм. Основные виды хроматографии: адсорбционная, ионообменная, гель-фильтрация, аффинная, ВЭЖХ. Аналитические характеристики, применение в клинике.

Хроматография (от греч. χρώμα — цвет) — метод разделения и анализа смесей веществ, а также изучения физико-химических свойств веществ. Основан на распределении веществ между двумя фазами — неподвижной (твердая фаза или жидкость, связанная на инертном носителе, сорбент) и подвижной (газовая или жидкая фаза, элюент). Название метода связано с первыми экспериментами по хроматографии, в ходе которых разработчик метода Михаил Цвет разделял ярко окрашенные растительные пигменты. Хроматограмма — результат регистрирования зависимости концентрации компонентов на выходе из колонки от времени.

Основные виды хроматографи и. В зависимости от природы взаимодействия, обусловливающего распределение компонентов между элюентом и неподвижной фазой, различают следующие основные виды — адсорбционную, распределительную, ионообменную, эксклюзионную (молекулярно-ситовую) и осадочную.

Адсорбционная хроматография основана на различии сорбируемости разделяемых веществ адсорбентом (твёрдое тело с развитой поверхностью); распределительная хроматография — на разной растворимости компонентов смеси в неподвижной фазе (высококипящая жидкость, нанесённая на твёрдый макропористый носитель) и элюенте (следует иметь в виду, что при распределительном механизме разделения на перемещение зон компонентов частичное влияние оказывает и адсорбционное взаимодействие анализируемых компонентов с твёрдым сорбентом); ионообменная хроматография — на различии констант ионообменного равновесия между неподвижной фазой (ионитом) и компонентами разделяемой смеси; эксклюзионная (молекулярно-ситовая) хроматография — на разной проницаемости молекул компонентов в неподвижную фазу (высокопористый неионогенный гель). Эксклюзионная хроматография подразделяется на гель-проникающую (ГПХ), в которой элюент — неводный растворитель, и гель-фильтрацию, где элюент — вода. Осадочная Х, основана на различной способности разделяемых компонентов выпадать в осадок на твёрдой неподвижной фазе.

В соответствии с агрегатным состоянием элюента различают газовую и жидкостную Х. В зависимости от агрегатного состояния неподвижной фазы газовая Х бывает газо-адсорбционной (неподвижная фаза — твёрдый адсорбент) и газожидкостной (неподвижная фаза — жидкость), а жидкостная Х — жидкостно-адсорбционной (или твёрдо-жидкостной) и жидкостно-жидкостной. Последняя, как и газо-жидкостная, является распределительной Х. К твёрдо-жидкостной Х относятся тонкослойная и бумажная.

Различают колоночную и плоскостную Х. В колоночной сорбентом заполняют специальные трубки — колонки, а подвижная фаза движется внутри колонки благодаря перепаду давления. Разновидность колоночной Х — капиллярная, когда тонкий слой сорбента наносится на внутренние стенки капиллярной трубки. Плоскостная Х подразделяется на тонкослойную и бумажную. В тонкослойной Х тонкий слой гранулированного сорбента или пористая плёнка наносится на стеклянную или металлическую пластинки; в случае бумажной Х используют специальную хроматографическую бумагу. В плоскостной Х перемещение подвижной фазы происходит благодаря капиллярным силам.

При хроматографировании возможно изменение по заданной программе температуры, состава элюента, скорости его протекания и др. параметров.

В зависимости от способа перемещения разделяемой смеси вдоль слоя сорбента различают следующие варианты Х: фронтальный, проявительный и вытеснительный. При фронтальном варианте в слой сорбента непрерывно вводится разделяемая смесь, состоящая из газа-носителя и разделяемых компонентов, например 1, 2, 3, 4, которая сама является подвижной фазой. Через некоторое время после начала процесса наименее сорбируемый компонент (например, 1) опережает остальные и выходит в виде зоны чистого вещества раньше всех, а за ним в порядке сорбируемости последовательно располагаются зоны смесей компонентов: 1 + 2, 1 + 2 + 3, 1 + 2 + 3 + 4. При проявительном варианте через слой сорбента непрерывно проходит поток элюента и периодически в слой сорбента вводится разделяемая смесь веществ. Через определённое время происходит деление исходной смеси на чистые вещества, располагающиеся отдельными зонами на сорбенте, между которыми находятся зоны элюента. При вытеснительном варианте в сорбент вводится разделяемая смесь, а затем поток газа-носителя, содержащего вытеснитель (элюент), при движении которого смесь через некоторый период времени разделится на зоны чистых веществ, между которыми окажутся зоны их смеси. Ряд видов Х осуществляется с помощью приборов, называемых хроматографами, в большинстве из которых реализуется проявительный вариант Х. Хроматографы используют для анализа и для препаративного (в т. ч. промышленного) разделения смесей веществ. При анализе разделённые в колонке хроматографа вещества вместе с элюентом попадают через различные промежутки времени в установленное на выходе из хроматографической колонки детектирующее устройство, регистрирующее их концентрации во времени. Полученную в результате этого выходную кривую называют хроматограммой. Для качественного хроматографического анализа определяют время от момента ввода пробы до выхода каждого компонента из колонки при данной температуре и при использовании определённого элюента. Для количественного анализа определяют высоты или площади хроматографических пиков с учётом коэффициентов чувствительности используемого детектирующего устройства к анализируемым веществам.

Для анализа и разделения веществ, переходящих без разложения в парообразное состояние, наибольшее применение получила газовая хроматография, где в качестве элюента (газа-носителя) используются гелий, азот, аргон и др. газы. Для газо-адсорбционного варианта Х в качестве сорбента (частицы диаметром 0,1—0,5 мм)используют силикагели, алюмогели, молекулярные сита, пористые полимеры и др. сорбенты с удельной поверхностью 5—500 м2/г. Для газо-жидкостной Х сорбент готовят нанесением жидкости в виде плёнки (высококипящие углеводороды, сложные эфиры, силоксаны и др.) толщиной несколько мкм на твёрдый носитель с удельной поверхностью 0,5—5 м2 и более. Рабочие температурные пределы для газо-адсорбционного варианта Х от —70 до 600 °С, для газо-жидкостного от —20 до 400 °С. Газовой Х можно разделить несколько см3 газа или мг жидких (твёрдых) веществ; время анализа от нескольких сек до нескольких часов.

В жидкостной колоночной Х в качестве элюента применяют легколетучие растворители (например, углеводороды, эфиры, спирты), а в качестве неподвижной фазы — силикагели (в т. ч. силикагели с химически привитыми к поверхности различными функциональными группами — эфирными, спиртовыми и др.), алюмогели, пористые стекла; размер частиц всех этих сорбентов несколько мкм. Подавая элюент под давлением до 50 Мн/м2 (500 кгс/см2), удаётся сократить время анализа от 2—3 ч до нескольких мин. Для повышения эффективности разделения сложных смесей используют программируемое во времени изменение свойств элюента путём смешения растворителей разной полярности (градиентное элюирование).

В тонкослойной и бумажной Х исследуемую смесь в жидком виде наносят на стартовую линию (начало пластинки или полоски бумаги), а затем разделяют на компоненты восходящим или нисходящим потоком элюента. Последующее обнаружение (проявление) разделённых веществ на хроматограмме (так в этих случаях называют пластину с нанесённым на неё сорбентом или хроматографическую бумагу, на которых произошло разделение исследуемой смеси на компоненты) осуществляют при помощи ультрафиолетовой (УФ) спектроскопии, инфракрасной (ИК) спектроскопии или обработкой реактивами, образующими с анализируемыми веществами окрашенные соединения.

Качественно состав смесей с помощью этих видов Х характеризуют определённой скоростью перемещения пятен веществ относительно скорости движения растворителя в данных условиях. Количественный анализ осуществляют измерением интенсивности окраски вещества на хроматограмме.

Хроматография широко применяется в лабораториях и в промышленности для качественного и количественного анализа многокомпонентных систем, контроля производства, особенно в связи с автоматизацией многих процессов, а также для препаративного (в т. ч. промышленного) выделения индивидуальных веществ (например, благородных металлов), разделения редких и рассеянных элементов.
Газовая Хроматография применяется для газов разделения, определения примесей вредных веществ в воздухе, воде, почве, промышленных продуктах; определения состава продуктов основного органического и нефтехимического синтеза, выхлопных газов, лекарственных препаратов, а также в криминалистике и т.д. Разработаны аппаратура и методики анализа газов в космических кораблях, анализа атмосферы Марса, идентификации органических веществ в лунных породах и т.п.
Газовая Хроматография применяется также для определения физико-химических характеристик индивидуальных соединений: теплоты адсорбции и растворения, энтальпии, энтропии, констант равновесия и комплексообразования; для твёрдых веществ этот метод позволяет измерить удельную поверхность, пористость, каталитическую активность.
Жидкостная Хроматография используется для анализа, разделения и очистки синтетических полимеров, лекарственных препаратов, детергентов, белков, гормонов и др. биологически важных соединений. Использование высокочувствительных детекторов позволяет работать с очень малыми количествами веществ (10-11—10-9 г ), что исключительно важно в биологических исследованиях. Часто применяется молекулярно-ситовая Хроматография и Хроматография по сродству; последняя основана на способности молекул биологических веществ избирательно связываться друг с другом.
Тонкослойная и бумажная Хроматография используются для анализа жиров, углеводов, белков и др. природных веществ и неорганических соединений.
В некоторых случаях для идентификации веществ используется Хроматография в сочетании с др. физико-химическими и физическими методами, например с масс-спектрометрией, ИК-, УФ-спектроскопией и др. Для расшифровки хроматограмм и выбора условий опыта применяют ЭВМ.


Поделиться с друзьями:

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.035 с.