I. Пирометаллургический способ получения металлов. — КиберПедия 

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

I. Пирометаллургический способ получения металлов.

2017-06-12 359
I. Пирометаллургический способ получения металлов. 0.00 из 5.00 0 оценок
Заказать работу

I. Пирометаллургический способ получения металлов.

1. Карботермический способ получения металлов восстановление металлов из оксидов углем или угарным газом

xOy + C = CO2 + Me,

xOy + C = CO + Me,

xOy + CO = CO2 + Me

Например,

ZnO+ C = CO + Zn

Fe3O4+ 4CO = 4CO2 + 3Fe

MgO + C = Mg + CO

2. Обжиг сульфидов с последующим восстановлением (если металл находится в руде в виде соли или основания, то последние предварительно переводят в оксид)

1 стадия – MеxSy+O2=MеxOy+SO2

2 стадия − MеxOy + C = CO2 + Me или MеxOy + CO = CO2 + Me

Например,

2ZnS + 3O2 = 2ZnO + 2SO2

MgCO3 = MgO + CO2

3. Металлотермический способ ( способ получения металлов, в котором в качестве восстановителя применяют металлы )

В этом способе в качестве восстановителя используют активные металлы. Примеры металлотермических реакций:

А) Алюмотермия (в тех случаях, когда нельзя восстановить углём или угарным газом из-за образования карбида или гидрида)

xOy + Al = Al2O3 + Me

Например,

4SrO + 2Al = Sr(AlO2)2 + 3Sr

3MnO2 + 4Al = 3Mn + 2Al2O3

3BaO + 2Al = 3Ba + Al2O3 (получают барий высокой чистоты)

Cr2O3 + 2Al = 2Cr + Al2O3

Б) Магниетермия:

xOy + Mg = MgO + Me

TiCl4 + 2Mg = Ti + 2MgCl2

Металлотермические опыты получения металлов впервые осуществил русский ученый Н. Н. Бекетов в XIX в.

4. Водородотермия − для получения металлов особой чистоты

xOy + H2 = H2O + Me

Например,

WO3 + 3H2 = W + 3H2O↑

MoO3 + 3H2 = Mo + 3H2O↑

 

II. Гидрометаллургический способ получения металлов.

Гидрометаллургический способ основан на растворении природного соединения с целью получения раствора соли этого металла и вытеснением данного металла более активным. Например, руда содержит оксид меди и ее растворяют в серной кислоте:

CuO + H2SO4 = CuSO4 + H2O,

затем проводят реакцию замещения:

CuSO4 + Fe = FeSO4 + Cu.

Таким способом получают серебро, цинк, молибден, золото, ванадий.

Если для восстановления требуется оксид металла, то в процессе переработки сначала получают оксид:

а) из сульфида – обжигом в кислороде:

2ZnS + 3O2 = 2ZnO + 2SO2

б) из карбоната – разложением при нагревании:

СаСО3 = СаО + СО2

 

III. Электрометаллургический способ получения металлов − восстановление металлов электрическим током (электролиз).

1. Щелочные и щелочноземельные металлы получают в промышленности электролизом расплавов солей (чаще всего хлоридов):

2NaCl –расплав, электр. ток → 2Na + Cl2

CaCl2 расплав, электр. ток.→ Ca + Cl2

расплавов гидроксидов:

4NaOH –расплав, электр. ток.→ 4Na + O2↑ + 2H2O (!!! используют изредка для Na)

2. Алюминий в промышленности получают в результате электролиза расплава оксида алюминия в криолите Na3AlF6 (из бокситов):

2Al2O3расплав в криолите, электр. ток.→ 4Al + 3O2

3. Электролиз водных растворов солей используют для получения металлов средней активности и неактивных:

2CuSO4+2H2O –раствор, электр. ток 2Cu + O2 + 2H2SO4

Металлы в природе.

Металлы в природе встречаются в трёх формах.

1) В свободном виде встречаются золото и платина; золото бывает в распыленном состоянии, а иногда собирается в большие массы самородки. Так в Австралии в 1869 году нашли глыбу золота в сто килограммов весом. Через три года обнаружили там же еще большую глыбу весом около двухсот пятидесяти килограммов. Наши русские самородки много меньше, и самый знаменитый, найденный в 1837 году на Южном Урале, весил всего около тридцати шести килограммов. В середине XVII века в Колумбии испанцы, промывая золото, находили вместе с ним тяжелый серебристый металл. Этот металл казался таким же тяжелым, как и золото, и его нельзя было отделить от золота промывкою. Хотя он и напоминал серебро, но был почти нерастворим и упорно не поддавался выплавке; его считали случайной вредной примесью или преднамеренной подделкой драгоценного золота. Поэтому испанское правительство приказывало в начале XVIII столетия выбрасывать этот вредный металл при свидетелях обратно в реку. Месторождения платины находятся и на Урале. Оно представляет собой массив дунита (изверженная горная порода, состоящая из силикатов железа и магния с примесью железняка). В нем содержатся включения самородной платины в виде зерен. В самородном виде и в форме соединений могут находиться в природе серебро, медь, ртуть и олово.

2) Все металлы. Металлы средней и малой активности, которые в ряду напряжений находятся до олова, в природных условиях встречаются только в виде соединений − образуют оксиды и сульфиды. Реже их можно встретить в составе сложных кислотно-металлических соединений.

3) Химически активные элементы встречаются либо в виде простых солей, либо в виде полиэлементных соединений, которые имеют очень сложное химическое строение, но в основном достаточно просто разлагаются на составляющие при определенном воздействии.

Чаще всего металлы в природе встречаются в виде солей неорганических кислот:

хлоридов сильвинит КСl • NaCl, каменная соль NaCl;

нитратов – чилийская селитра NaNO3;

сульфатов – глауберова соль Na2SO4•10 H2O, гипс CaSO4•2Н2О;

карбонатов – мел, мрамор, известняк СаСО3, магнезит MgCO3, доломит CaCO3•MgCO3;

сульфидов серный колчедан FeS2, киноварь HgS, цинковая обманка ZnS;

фосфатов – фосфориты, апатиты Ca3(PO4)2;

оксидов – магнитный железняк Fe3O4, красный железняк Fe2O3, бурый железняк, содержащий различные гидроксиды железа (III) Fe2O3•Н2О.

Ещё в середине II тысячелетия до н. э. в Египте было освоено получение железа из железных руд. Это положило начало железному веку в истории человечества, который пришёл на смену каменному и бронзовому векам. На территории нашей страны начало железного века относят к рубежу II и I тысячелетий до н. э.

Минералы и горные породы, содержащие металлы и их соединения и пригодные для промышленного получения металлов, называются рудами.

Отрасль промышленности, которая занимается получением металлов из руд, называется металлургией. Так же называется и наука о промышленных способах получения металлов из руд.

Металлургию подразделяют на черную (производство железа и его сплавов) и цветную (производство остальных металлов).

Большинство металлов встречаются в природе в составе соединений, в которых металлы находятся в положительной степени окисления, значит для того, чтобы их получить, в виде простого вещества, необходимо провести процесс восстановления.

Но прежде чем восстановить природное соединение металла, необходимо перевести его в форму, доступную для переработки, например, оксидную форму с последующим восстановлением металла.

3. Промышленные способы получения металлов.

При разработке технологии получения химических веществ используются законы термодинамики, кинетики, теплотехники, физико-химического анализа и др. Учитываются, естественно, и экономические условия. В случае, если реакция обратима, применяется принцип Ле Шателье:

Если на систему, находящуюся в равновесии, воздействовать извне, то равновесие в системе сместится в сторону той реакции (прямой или обратной), которая приводит к частичной компенсации этого воздействия.

Химические методы применяются и при очистке выбросов, а также сточных вод химических производств.

Существует несколько способов получения металлов в промышленности. Их применение зависит от химической активности получаемого элемента и используемого сырья. Некоторые металлы встречаются в природе в чистом виде, другие же требуют сложных технологических процедур для их выделения. Добыча одних элементов занимает несколько часов, другие же требуют многолетней обработки в особых условиях. Общие способы получения металлов можно разделить на следующие категории: восстановление, обжиг, электролиз, разложение.

Есть также специальные методы получения редчайших элементов, которые подразумевают создание специальных условий в среде обработки. Сюда может входить ионная декристаллизация структурной решетки или же наоборот, проведение контролируемого процесса поликристаллизации, которые позволяют получать определенный изотоп, радиоактивное облучение и другие нестандартные процедуры воздействия. Они используются довольно редко ввиду высокой дороговизны и отсутствия практического применения выделенных элементов. Поэтому остановимся подробнее на основных промышленных способах получения металлов. Они довольно разнообразны, но все основаны на использовании химических или физических свойств определенных веществ.

Черная металлургия.

Черная металлургия долгое время содержала в себе два последовательных производства. Сначала из железной руды получали чугун, а затем из чугуна – сталь. Чугун производят в доменных печах.

Выплавляемый металл насыщается углеродом и образуется сплав железа с углеродом – чугун. Большая часть произведенного чугуна используется на получение стали. Сталь содержит менее 2% углерода и существенно меньше, чем в чугуне, примесей серы, азота и фосфора. Поэтому необходимо выжечь углерод и примеси, а окисленное железо восстановить.

Долгое время сталь варили в мартеновских печах. В настоящее время они практически не используются из-за низкой производительности. Большую производительность имеют кислородные конвертеры и электропечи.

В настоящее время применяют технологию прямого восстановления железа из руды, минуя стадию получения чугуна. Подготовленное сырье нагревается в атмосфере смеси водорода и монооксида углерода. В результате образуется железный порошок, из которого можно получать любой необходимый сплав.

Производство железа основано на карботермическом восстановлении оксидных металлсодержащих руд.

1) Сульфидные и другие руды вначале подвергают окислительному обжигу:

4FeS2 + 11O2 = 2Fe2O3 + 8SO2.

2)Восстановление оксидных руд осуществляется в доменных печах при высоких температурах, при этом протекают следующие реакции:

3Fe2O3 + CO = CO2 + 2Fe3O4,

Fe3O4 + CO = CO2 + 3FeO,

FeO + CO = CO2 + Fe

или FeO + C = CO + Fe.

 

Полученное железо насыщено углеродом.

3)Затем происходит «выжигание» углерода в сталеплавильных или конверторных печах с образованием стали.

Перед получением чистого металла зачастую производится одна или несколько процедур разложения сложных веществ на более простые. Гораздо проще выделять один продукт из двухэлементного соединения, чем из многоэлементного сложного образования. К тому же технологический процесс требует тщательного контроля, который очень сложно обеспечить, когда речь идет о большом количестве примесей с разными свойствами.

Обжиг является лишь промежуточным методом получения чистого элемента. Он предполагает сжигание сульфида металла в кислородной среде, в результате чего образуется оксид, который затем подвергается процедуре восстановления. Этот метод также применяется довольно часто, так как сульфидные соединения широко распространены в природе. Прямое получение чистого металла из его соединений серой не используют по причине сложности и дороговизны технологического процесса. Гораздо проще и быстрее провести двойную обработку, как было указано выше.

Электролиз хлорида натрия.

 

Получение алюминия.

 
 

Иногда электролитический способ получения металлов применяют к щелочноземельным элементам, но они уже не так хорошо поддаются данной обработке, а некоторые и вовсе не разрывают полностью связь с неметаллом.

Последний способ − разложение происходит под воздействием высоких температур, которые позволяют разорвать связи между элементами на молекулярном уровне. Для каждого соединения потребуется свой температурный уровень, но в целом метод не содержит каких-либо хитростей или особенностей. Единственный момент: полученный в результате обработки металл, может потребовать проведения процедуры спекания. Но этот способ позволяет получить практически на 100% чистый продукт, так как для его проведения не применяются катализаторы и другие химические вещества.

Электрохимическое восстановление применяют также для рафинирования (очистки) «сырых» металлов (меди, никеля, цинка и др.), полученных другими способами. При электролитическом рафинировании в качестве анода используют «черновой» (с при­месями) металл, в качестве электролита − раствор соединений данного металла.

Биометаллургический способ.

Биометалургия основана на биохимических процессах, протекающих при использовании микроорганизмов. Известно, что микроорганизмы типа литотрофы (с лат. – «поедающие камни») могут преобразовывать нерастворимые сульфиды металлов в растворимые сульфаты. Сейчас с применением микроорганизмов добывают медь (в США данный метод достигает 10% от общего ее производства), уран, рений, серебро, никель, свинец, а также некоторые редкие металлы.

Водородотермический способ.

Данным способом получают тугоплавкие металлы, например, молибден и вольфрам, восстанавливая их водородом из оксидов данных металлов.

Сплавы.

Сплавы − это макроскопические однородные системы, состоящие из двух или более металлов (реже − металлов и неметаллов) с характерными металлическими свойствами. В более широком смысле сплавы-любые однородные системы, полученные сплавлением металлов, неметаллов, неорганических соединений и т.д. Многие сплавы (например, бронза, сталь, чугун) были известны в глубокой древности и уже тогда имели обширное практическое применение. Техническое значение металлических сплавов объясняется тем, что многие их свойства (прочность, твердость, электрическое сопротивление) гораздо выше, чем у составляющих их чистых металлов.

Называют сплавы исходя из названия элемента, содержащегося в них в наибольшем количестве (основной элемент, основа), например сплавы железа, сплавы алюминия. Элементы, вводимые в сплавы для улучшения их свойств, называют легирующими, а сам процесс − легированием.

По характеру металла − основы различают черные сплавы (основа − Fe), цветные сплавы (основа − цветные металлы), сплавы редких металлов, сплавы радиоактивных металлов.

По числу компонентов сплавы делят на двойные, тройные и т.д..

По структуре сплавы делят на гомогенные (однородные) и гетерогенные (смеси), состоящие из нескольких фаз (последние могут быть стабильными и метастабильными).

По характерным свойствам сплавы делят на тугоплавкие, легкоплавкие, высокопрочные, жаропрочные, твердые, антифрикционные, коррозионностойкие, сплавы со специальными свойствами и др.

По технологии производства выделяют литейные (для изготовления деталей методом литья) и деформируемые (подвергаемые ковке, штамповке, прокатке, прессованию и др. видам обработки давлением).

Основной метод получения сплавов − смешение и расплавление составляющих его компонентов с послед. затвердеванием в кристаллическом или аморфном состоянии.

Сплавы можно получать и без расплавления основного компонента – методами порошковой металлургии.

Другие способы получения – осаждение из растворов и газовой фазы, диффузионное насыщение одного компонента другим, совместное электрохимическое осаждение из растворов и др. Для получения сплавов в виде тонких пленок и покрытий используют осаждение из газовой фазы, напыление, конденсацию паров, электролиз.

По назначению сплавы разделяют на большое число видов.

Конструкционные сплавы предназначены для изготовления деталей машин, строит. конструкций и др. сооружений. Такие сплавы обладают целым комплексом свойств, обеспечивающих надежную и долговечную работу в условиях высоких механических напряжений – высокой прочностью, ударной вязкостью, хорошим сопротивлением к усталости, динамическим и ударным нагрузкам. Основную (по объему) часть выпускаемых во всем мире конструкционных сплавов составляют различные марки сталей и чугунов. В авиационной, судостроительной и космической технике, где кроме перечисленных выше свойств необходимо учитывать плотность материала, находят применение конструкционные сплавы на основе Аl и Ti, которые по ударной прочности во многих случаях не уступают, а иногда даже превосходят наиболее прочные стали.

Из инструментальных сплавов изготовляют главным образом измерительные и металлообрабатывающие инструменты. Первые изготовляют в основном из углеродистых или легированных сталей, вторые − из быстрорежущих, штамповых сталей и твердых сплавов.

Изделия из быстрорежущих и штамповых сталей получают традиционными методами литья с последующей механической и термической обработкой. Инструменты из твердых сплавов обладают более высокой твердостью, чем инструменты из стали, и способны работать при более высоких температурах и с более высокой производительностью.

В группу электротехнических входят сплавы с особыми магнитными и электрическими свойствами.

К сплавам с особыми электрическими свойствами относят: электроконтактные сплавы (размыкающие, скользящие); с высоким, слабо зависящим от температуры, электрическим сопротивлением; термоэлектродные; резисторные; сплавы для нагревательных элементов и др. Размыкающие контакты должны обладать высокой тепло- и электропроводностью, эрозионной стойкостью, сопротивлением свариваемости. Их изготовляют из сплавов благородных металлов, сплавов систем W-Ni-Cu, W-Ni-Ag, Ag-CuO (CdO). Скользящие контакты, кроме того, должны обладать низким коэффициентом трения и высокой износостойкостью. Для их изготовления используют сплавы на основе систем Сu-С, Ag-Ni, Ag-Pd с добавками MoS2, Sb и др., получаемые методами порошковой металлургии. Сплавы с высоким электрическим сопротивлением и малым температурным коэффициентом для реостатов, измерительных и других приборов изготовляют на основе систем Cu-Ni (константан), Cu-Mn-Ni (манганин). Сплавы для нагревательных элементов обладают высоким электрическим сопротивлением, достаточной прочностью и стойкостью против окисления при высоких температурах, например, сплавы, содержащие Ni и Сr (нихромы), Fe, Сr и А1 (фехраль), Ni и Сг (хромаль). Для изготовления термопар используют сплавы на основе систем Pt-Ph, Ni-Cr (хромель), Ni-Аl-Мn-Si (алюмель), Cu-Ni (копель).

Триботехнические сплавы, предназначенные для работы в узлах трения, подразделяют на фрикционные (увеличивающие трение) и антифрикционные (снижающие трение). Первые должны обладать высокими и стабильными в широком интервале температур коэффициентами трения, износостойкостью, теплопроводностью, сопротивлением схватыванию, достаточной прочностью; вторые − низким коэффициентом трения, высокой износостойкостью. Фрикционные сплавы получают в основном методами порошковой металлургии на основе Fe и Си с добавками асбеста, оксидов и карбидов (увеличивающих трение), Pb, Sn, графита, сульфидов, солей (улучшающих износ и предотвращающих схватывание). Антифрикционные сплавы- чугуны, бронзы и баббиты-сплавы на основе Pb, Sn, Zn или Аl. Методами порошковой металлургии получают антифрикционные сплавы на основе системы Fe−графит и бронза−графит.

Большую группу составляют сплавы со специфическими свойствами:

· Тугоплавкие сплавы используют для нагревательных элементов и др. деталей, работающих при т-ре > 1500°С, изготовляют на основе переходных металлов IV-VI групп, а также тугоплавких карбидов, нитридов, силицидов, боридов различных металлов.

· Легкоплавкие сплавы на основе Sn, Pb, Cd, Bi (например, сплав Вуда), Та, Hg, Zn имеют температуры плавления ниже отдельных компонентов и используются в качестве предохранительных вставок, пробок, легкоплавких припоев.

· Пористые сплавы создают в основном методами порошковой металлургии; сплавы со сквозными порами используют в качестве фильтров, самосмазывающихся подшипников, пламегасителей; с изолированными порами (пеноматериалы) − в качестве теплозащиты.

· Сплавы с постоянным коэффициентом термического расширения,

· Сплавы с особыми ядерными свойствами используют в атомной технике: высоким или низким сечением захвата (вероятностью поглощения) нейтронов, g-лучей; способностью замедлять и отражать нейтроны; способностью передавать тепло, выделившееся в результате ядерных реакций (например, сплавы для твэлов). Для их изготовления используют актиноиды Li, Be, В, С, Zr, Ag, Cd, In, Gd, Er; Sm, Hf, W, Pb и др. элементы.

· Сплавы с эффектом памяти формы например, на основе никелида Ti: изделия определенной формы из таких сплавов, будучи многократно деформированы, после нагрева восстанавливают свою первоначальную форму.

 

Распространение сплавов в современной промышленности

Следует заметить, что все металлы, которые интенсивно используются современной промышленностью, являются именно сплавами. Так, более 90% всего получаемого в мире железа идет на изготовление чугунов и различных сталей. Объясняется такой подход к делу тем, что сплавы металлов в большинстве случаев демонстрируют лучшие свойства, нежели чем их «прародители». Так, предел текучести чистого алюминия составляет всего лишь 35 Мпа. А вот если в него добавить 1,6% меди, магния и цинка в соотношении 2,5% и 5,6% соответственно, то этот показатель может легко превысить даже 500 МПа. Кроме прочего, можно значительно улучшить свойства электропроводности, теплопроводности или другие. В сплавах строение кристаллической решетки изменяется, что и позволяет приобретать им прочие свойства. Проще говоря, количество такого рода материалов в наши дни велико, но оно постоянно продолжает расти.

Основные классификационные сведения

Стали

Все соединения железа, содержащие до 2% углерода, называются сталями. Если в составе имеется хром, ванадий или молибден, то их называют легированными. Количество сталей на сегодняшний день таково, что одно их перечисление могло бы занять не слишком тонкую книгу. Если в материале менее 0,25% углерода, то он используется в каких-то технических конструкциях. Если же в стали более 0,55% углерода, то она идеально подходит для производства различных высококачественных режущих инструментов, в том числе резцов для токарных станков, сверл и хирургических принадлежностей. Но если речь идет о приспособлениях, которые применяются для быстрой резки, то на их производство идет исключительно легированная сталь.

Чугун

Если в сплаве железа содержится более 3-4% углерода, то он называется чугуном. Кроме того, его важным элементом является кремний. Из чугуна изготавливается масса деталей и готовых изделий. К примеру, блоки двигателей для автомобилей. В случае качественно сделанной отливки без полостей и каверн, изделие обладает впечатляющей механической прочностью.

Медные сплавы

Чаще всего под этим термином понимаются разные сорта латуни. Это такие сплавы меди, в которых содержится от 5 до 45% цинка. Если его содержание колеблется в пределах 5-20%, то это красная латунь (томпак). Если же в материале содержится уже 20–36% Zn, то это – желтая латунь. Эти материалы идеальны в случае необходимости производства и формовки мелких деталей. Малоизвестно, но сплав меди с кремнием носит название кремнистой бронзы и обладает большой механической прочностью. Практически тем же характеризуется фосфористая разновидность (к меди прибавляется 5% олова и некоторое количество фосфора). Как и в прошлом случае, отличается высокой прочностью и пружинистыми качествами, а потому идеальна для изготовления мембран и разного рода пружин.

Сплавы свинца

Вообще цветные металлы и сплавы – неразделимо связанные понятия, так как с древнейших времен люди умели выплавлять многосоставные материалы, которые с успехом использовали в военном и мирном деле. Особенно это относится к свинцу, из сплавов которого еще римляне делали водопроводы и канализации. Наиболее известен в настоящее время обычный припой, который изготавливается из одной части свинца и двух частей олова. Как видно из названия, он используется для пайки деталей. Применяется в радиотехнике и прочих технических отраслях. Из сурьмы и свинца делают сплавы, которые используются для изготовления оболочек разного рода кабелей.

Давно известно, что соединения этого металла с кадмием, висмутом или оловом могут плавиться приблизительно при температуре 70 градусов по шкале Цельсия. Именно поэтому сегодня из них делают различные предохранители в системах автоматического пожаротушения. Как ни странно, но свинец издавна был известен поварам и рестораторам, так как из него нередко делали столовую посуду и приборы. Сплав, который использовался для этого, называется пьютер. В его состав входит приблизительно 85–90% олова. Оставшиеся 10-15% как раз-таки занимает свинец (стандартный сплав двух металлов). Баббиты − это также соединения на основе свинца, в состав которых также входит олово, а также мышьяк и сурьму. Эти сплавы весьма ядовиты, но из-за некоторых особых качеств их активно используют в подшипниковой отрасли промышленности.

Легкие сплавы

В последние годы современной промышленности требуется огромное количество легких сплавов, которые обладают повышенной механической прочностью, а также устойчивостью к воздействиям неблагоприятных факторов внешней среды и высокой температуре. Чаще всего для их производства используется алюминий, бериллий, а также магний. Особенно востребованы соединения на основе алюминия и магния, так как сфера их возможного применения чрезвычайно широка.

Сплавы на основе алюминия

Сплавы алюминия активно применяются в авиационной, космической, военной, научно-инженерной и прочих отраслях. Без алюминия невозможно представить себе производителей современной бытовой и мобильной техники, так как корпуса из этого металла все чаще используются современными флагманами этих отраслей. Делятся сплавы алюминия сразу на три большие группы:

· Литейные (Al – Si). Особенно широко они распространены в автомобилестроении и военной промышленности.

· Сплавы, предназначенные для литья под давлением (Al – Mg).

· Соединения повышенной прочности, самозакаливающиеся (Al – Cu).

Достоинства и недостатки этого материала

Многие сплавы из этого материала экономичны, сравнительно недороги и весьма долговечны, так как не поддаются коррозии. Отличаются высокой прочностью в условиях экстремально низких температур (аэрокосмические отрасли) и весьма простым процессом обработки. Для их формовки не требуется особенно сложного и дорогостоящего оборудования, так как они сравнительно пластичные и вязкие (смотрите таблицу с характеристиками). Увы, но есть у них и свои недостатки. Так, при температурах выше 175 °С механические свойства алюминия и сплавов на его основе начинают стремительно ухудшаться. Зато благодаря наличию амальгамы на их поверхности (защитной пленки из гидроксида алюминия) они обладают выдающейся устойчивостью к действию агрессивных химических сред, в том числе кислот и щелочей. Они имеют отличную электропроводность и теплопроводность, немагнитны. Считается, что они абсолютно безвредны для здоровья человека, а потому их можно использовать для производства пищевой посуды и столовых принадлежностей. Впрочем, последние исследователи медиков все же говорят о том, что соединения алюминия в некоторых случаях могут провоцировать развитие болезни Альцгеймера. Военные полюбили эти материалы за то, что они не дают искр даже при резких механических воздействиях и ударах. Кроме того, они отлично поглощают ударные нагрузки. Проще говоря, некоторые эти сплавы металлов (состав которых чаще всего засекречен) активно используются для производства легкой брони для оснащения ей разнообразных БТР, БМП, БРДМ и прочей техники. Благодаря всем этим свойствам сплавы на основе повсеместно используют для производства поршней для двигателей внутреннего сгорания, а также в производстве строительных конструкций (устойчивость к коррозии). Широко используется алюминий и материалы на его основе в производстве отражателей для светотехнических представлений, электропроводки, а также для изготовления корпусов разнообразной техники (не намагничивается). Важно заметить, что даже в теоретически чистом алюминии порой содержится значительная примесь железа. Оно может способствовать более высокой механической прочности материала, но его присутствие делает сплав на основе алюминия сильно подверженным коррозионным процессам. Кроме того, сплав в значительной степени утрачивает свою пластичность, что также не слишком хорошо в большинстве случаев. Ослабить негативное действие примесей железа помогает кобальт, хром или марганец. Если же в состав сплава входит литий, то получается весьма прочный и упругий материал. Неудивительно, что такое соединение пользуется большой популярностью в авиакосмической промышленности. Увы, но сплавы лития с алюминием имеют неприятное свойство, которое опять-таки выражается в плохой пластичности.

Сплавы магния

Сплавы магния имеют крайне невысокую массу, а также характеризуются весьма впечатляющей прочностью. Кроме того, именно эти материалы великолепно подходят для литейной промышленности, а заготовки прекрасно поддаются токарной и фрезеровочной обработке. А потому их активно используют в производстве ракет и авиационных турбин, корпусов приборов, дисков автомобильных колес, а также некоторых сортов броневой стали. Некоторые разновидности этих сплавов отличаются великолепными показателями вязкостного демпфирования, а потому они идут на производство деталей и конструкций, которым приходится работать в условиях экстремально высокого уровня вибраций.

Достоинства и недостатки магниевых сплавов

Они довольно мягкие, сравнительно неплохо сопротивляются износу, но отличаются не слишком впечатляющей пластичностью. Зато они отличаются прекрасной приспособленностью к формовке в условиях высоких температур, отлично приспособлены для соединения с использованием всех существующих разновидностей сварок, а также могут быть соединены посредством болтовых соединений, клепки и даже склеивания. Увы, но все эти сплавы не отличаются особенной стойкостью к воздействию кислот и щелочей. Крайне негативно на них воздействует долгое пребывание в морской воде. Впрочем, магниевые сплавы на удивление стабильны в условиях воздушной среды, так что многими их недостатками можно пренебречь. Если же требуется надежно защитить такие детали от действия коррозии, то применяют нанесение хромового покрытия, анодирование или подобные же методы. Их можно плакировать при помощи никеля, меди или хрома, предварительно погружая в расплав химически чистого цинка. При такой обработке резко возрастают показатели их прочности и устойчивости к истиранию. Нужно напомнить, что магний является довольно-таки активным с химической точки зрения металлом, а потому при работе с ним необходимо соблюдать хотя бы базовые меры безопасности.

 

 

Вопросы: (для контроля знаний)

  1. В чём суть пирометаллургического способа получения металлов? Какие металлы можно получить этим способом? Приведите примеры и уравнения реакций получения.
  2. В чём суть электрометаллургического способа получения металлов? Какие металлы можно получить этим способом? Приведите примеры и уравнения реакций получения.
  3. Каковы этапы получения чугуна и стали?
  4. Какие ещё бывают способы получения металлов? Какие металлы можно получить этими способами? Приведите примеры и уравнения реакций получения.
  5. Каковы экологические проблему металлургического производства и способы их решения?
  6. Что такое сплавы и чем они по свойствам отличаются от чистых металлов? Приведите примеры.
  7. На какие группы можно проклассифицировать сплавы?

Список используемых источников:

  1. О.С. Габриелян и др. Химия. 11 класс. Профильный уровень: учебник для общеобразовательных учреждений; Дрофа, Москва, 2008г.;
  2. «Репетитор по химии» под редакцией А. С. Егорова; «Феникс», Ростов-на-Дону, 2006г;
  3. Г. Е. Рудзитис, Ф. Г. Фельдман. Химия 11 кл. М., Просвещение, 2001;
  4. https://sites.google.com/site/himulacom/zvonok-na-urok/11-klass---cetveertyj-god-obucenia/urok-no33-obsie-sposoby-polucenia-metallov
  5. http://olgvo2007.narod.ru/olderfiles/2/A_30_Obschie_sposoby_polucheniya_m-98533.doc
  6. http://festival.1september.ru/articles/416196/
  7. http://promplace.ru/dobycha-i-poluchenie-metallov-staty/sposoby-polucheniya-metallov-1539.htm
  8. http://www.xumuk.ru/encyklopedia/2/4178.html
  9. http://www.syl.ru/article/168591/new_splavyi-metallov-osnovnyie-splavyi-metallov-svoystva-metallov-i-splavov

 

I. Пирометаллургический способ получения металлов.

1. Карботермический способ получения металлов восстановление металлов из оксидов углем или угарным газом

xOy + C = CO2 + Me,

xOy + C = CO + Me,

xOy + CO = CO2 + Me

Например,

ZnO+ C = CO + Zn

Fe3O4+ 4CO = 4CO2 + 3Fe

MgO + C = Mg + CO

2. Обжиг сульфидов с последующим восстановлением (если металл находится в руде в виде соли или основания, то последние предварительно переводят в оксид)

1 стадия – MеxSy+O2=MеxOy+SO2

2 стадия − MеxOy + C = CO2 + Me или MеxOy + CO = CO2 + Me

Например,

2ZnS + 3O2 = 2ZnO + 2SO2

MgCO3 = MgO + CO2

3. Металлотермический способ ( способ получения металлов, в котором в качестве восстановителя применяют металлы )

В этом способе в качестве восстановителя используют активные металлы. Примеры металлотермических реакций:

А) Алюмотермия (в тех случаях, когда нельзя восстановить углём или угарным газом из-за образования карбида или гидрида)

xOy + Al = Al2O3 + Me

Например,

4SrO + 2Al = Sr(AlO2)2 + 3Sr

3MnO2 + 4Al = 3Mn + 2Al2O3

3BaO + 2Al = 3Ba + Al2O3 (получают барий высокой чистоты)

Cr2O3 + 2Al = 2Cr + Al2O3

Б) Магниетермия:

xOy + Mg = MgO + Me

TiCl4 + 2Mg = Ti + 2MgCl2

Металлотермические опыты получения металлов впервые осуществил русский ученый Н. Н. Бекетов в XIX в.

4. Водородотермия − для получения металлов особой чистоты

xOy + H2 = H2O + Me

Например,

WO3 + 3H2 = W + 3H2O↑

MoO3 + 3H2 = Mo + 3H2O↑

 


Поделиться с друзьями:

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.014 с.