Вычисление двойного интеграла в полярных координатах — КиберПедия 

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Вычисление двойного интеграла в полярных координатах

2017-06-11 428
Вычисление двойного интеграла в полярных координатах 0.00 из 5.00 0 оценок
Заказать работу

Для упрощения вычисления двойного интеграла часто применяют метод подстановки, т.е. вводят новые переменные под знаком двойного интеграла.

Введём новые переменные, пусть и , функции φ и ψ имеют в некоторой области плоскости Оuv непрерывные частные производные.

Функциональный определитель

- называется определителем Якоби или якобианом.

Если функция непрерывна в области D, а якобиан , то справедлива формула замены переменных в двойном интеграле

.

Рассмотрим частный случай: замену декартовых координат х и у полярными координатами r и φ. Прямоугольные и полярные координаты связаны формулами

.

В качестве u и v возьмём полярные координаты r и φ. Составим Якобиан преобразования u=r, v=φ.

Формула замены переменных x, y в полярных координатах будет иметь вид

- область в полярной системе координат, соответствует области D в декартовой системе координат.

Для вычисления двойного интеграла в полярных координатах применяют тоже правило сведения его к двукратному интегралу

Рис. 9
Если область (рис.9) ограниченна лучами φ=α и φ=β, где α<β и кривыми , , где , для любого , т.е. область -правильная: то двойной интеграл в полярной системе координат вычисляется по следующей формуле

Внутренний интеграл берётся при условии, что φ - константа.

Пусть функции взаимно однозначно отображают открытое множество, содержащее область плоскости на открытое множество, содержащее область , и пусть является образом . Если и их частные производные непрерывны, а определитель , то . Выражение называется элементом площади в криволинейных координатах, функциональный определитель - якобианом.

 

Якобиан, функциональный определитель ½aik½1n с элементами , где yi = fi (X1, ..., Xn), l £ i £ n, функции, имеющие непрерывные частные производные в некоторой области А; обозначение:

.

Введён К. Якоби (1833, 1841). Если, например, n = 2, то система функций

y1 = f1 (. x1, x2), y2 = f2 (x1, x2) (1)

задаёт отображение области D, лежащей на плоскости x1, x2, на часть плоскости y 1, y 2. Роль Якобиан для этого отображения во многом аналогична роли производной для функции одной переменной. Например, абсолютное значение Якобиан в некоторой точке М равно коэффициенту искажения площадей в этой точке (т. е. пределу отношения площади образа окрестности точки М к площади самой окрестности, когда размеры окрестности стремятся к нулю). Якобиан в точке М положителен, если отображение (1) не меняет ориентации в окрестности точки М, и отрицателен в противоположном случае. Если Якобиан не обращается в нуль в области D и j (y1, у2) функция, заданная в области D1 (образе D), то

(формула замены переменных в двойном интеграле). Аналогичная формула имеет место для кратных интегралов. Если Якобиан отображения (1) не обращается в нуль в области Д, то существует обратное отображение

x1 = j 1 (y1, y2), x1 = j2(y 1, y2),

причём

(аналог формулы дифференцирования обратной функции). Это утверждение находит многочисленные применения в теории неявных функций. Для возможности явного выражения в окрестности точки М (x1(0),..., xn(0, y1(0),..., ym(0)) функций y1,..., ут, неявно заданных уравнениями Fk (x1,..., xn, y1,..., ум) = 0, (2)

1 £ k £ m,

достаточно, чтобы координаты точки М удовлетворяли уравнениям (2), функции Fk имели непрерывные частные производные и Якобиан

был отличен от нуля в точке М.

 

1. Применение двойного интеграла: вычисление геометрических величин – площади области, объема тела, площади поверхности тела.

 

 

2. Применение двойного интеграла: вычисление физических величин – массы пластины, моментов инерции плоской материальной пластины, координат центра тяжести материальной пластины, статических моментов пластины.

 

 

30. Замена переменных в тройном интеграле. Тройной интеграл в цилиндрических и сферических координатах.


Поделиться с друзьями:

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.01 с.