Классификация средств измерений. — КиберПедия 

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Классификация средств измерений.

2017-06-04 227
Классификация средств измерений. 0.00 из 5.00 0 оценок
Заказать работу

Виды измерений.

Измерения классифицируют:

- по общим приёмам получения результатов измерений – прямые, косвенные, совместные, совокупные;

-по выражению результата измерений – абсолютные, относительные;

-по характеристики точности – равноточные, неравноточные;

-по числу измерений в серии – однократные, многократные;

-по отношению к изменению измеряемой величины – статические, динамические;

-по метрологическому назначению – технические, метрологические.

Прямое измерение – измерение, при котором искомое значение величины находят непосредственно из опытных данных. Например, измерение температуры воздуха термометром, силы тока – амперметром, диаметра вала – микрометром и т.п.

Косвенное измерение – это измерение, при котором искомое значение величины находят на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям. При этом числовое значение искомой величины определяется по формуле:

z=f(a1, a2,…, am), где: z - значение искомой величины; a1, a2,…, am – значение непосредственно измеряемых величин. Пример. Определение плотности p тела цилиндрической формы (рис. 1.3, б) на основании прямых измерений его массы m, диаметра d и высоты h - p=4m / (π·d2·h).

Совместные измерения – это производимые одновременно измерения двух или нескольких не одноименных величин для нахождения зависимости между ними. Например, на основании одновременных измерений приращений Δl длины детали в зависимости от изменений Δt его температуры (не одноименных величин) определяют коэффициент К линейного расширения материала образца: К=Δl/(l*Δt).

К совокупным измерениям относятся производимые одновременно измерения нескольких одноимённых величин, при которых искомые значения величин находят решением системы уравнений, получаемых при прямых измерениях различных сочетаний этих величин. К совокупным относятся, например, измерения, при которых массы отдельных гирь набора находят при известной массе одной из них и по результатам прямых измерений (сравнений) масс различных сочетаний гирь.

Абсолютное измерение – измерение, приводящее к значению измеряемой величины, выраженному в её единицах. Например, при измерении силы электрического тока амперметром или длины детали микрометром результат измерения выражается в единицах измеряемых величин (в амперах и миллиметрах).

Относительное измерение – измерение отношения величины к одноимённой величине, играющей роль единицы, или измерение величины по отношению к одноимённой величине, принимаемой за исходную. Относительное измерение основано на сравнение измеряемой величины с известным значением меры. Исходную величину при этом находят алгебраическим суммированием размера меры и показаний прибора. Например, контроль калибра пробки на вертикальном оптиметре.

Равноточные измерения – ряд измерений какой-либо величины, выполненных одинаковыми по точности средствами измерений в одних и тех же условиях. Например, измерение диаметра вала гладким микрометром и индикаторной скобой.

Неравноточные измерения – ряд измерений какой-либо величины, выполненных различными по точности средствами измерений и (или) в разных условиях.

Однократное измерение – измерение, выполненное один раз. Например, измерение конкретного момента времени по часам. В ряде случаев, когда нужна большая уверенность в получаемом результате, одного измерения оказывается недостаточно. Тогда выполняется два, три и более измерений одной и той же конкретной величины. В таких случаях допускается выражение: “двукратное измерение”, “трёхкратное измерение” и т.д.

Многократное измерение – измерение одной и той же физической величины, когда результат получают из нескольких следующих друг за другом измерений, т.е. измерение, состоящее из ряда однократных измерений. При числе отдельных измерений n>4, ряд измерений может быть обработан в соответствии с требованиями математической статистики. Следовательно, при четырёх измерениях и более измерение можно считать многократным. За результат многократного измерения обычно принимают среднеарифметическое значение из результатов однократных измерений, входящих в ряд.

Статическое измерение – измерение физической величины, принимаемой в соответствии с конкретной измерительной задачей за неизменную на протяжении времени измерения. Например, измерение длины детали при нормальной температуре, измерение размеров земельного участка.

Динамические измерения – измерения физической величины, размер которой изменяется с течением времени. Быстрое изменение размеров измеряемой величины требует её измерения с точной фиксацией момента времени. Например, измерение расстояния до уровня земли со снижающегося самолёта.

Технические измерения – измерения при помощи рабочих средств измерений. Технические измерения выполняются с целью контроля и управления научными экспериментами, контроля параметров изделий, технологических процессов, управления движением различных видов транспорта, диагностики заболеваний, контроля загрязнённости окружающей среды и т.п. Например, измерение давления пара в котле при помощи манометра, измерение ряда физических величин, характеризующих технологический процесс.

Метрологические измерения – измерения при помощи эталонов и образцовых средств измерений с целью воспроизведения единиц физических величин при передачи их размера рабочим средствам измерений. Например, при поверке образцовых мер магнитной индукции 3-го разряда на поверочной установке осуществляются измерения образцовым тесламетром 2-го разряда размера величины, воспроизведённой мерой. Эти измерения производятся с метрологической целью, т.е. являются метрологическими.

 


 

Принцип и методы измерений.

Любые измерения представляют собой физический эксперимент, выполнение которого основано на использовании тех или иных физических явлений. Совокупность физических явлений, на которых основаны измерения, называются принципом измерения.

Совокупность приёмов использования принципов и средств измерения составляет метод измерения.

Выбор того или иного метода измерений зависит от измерительной задачи, которую следует решать (точность результата измерений, быстрота его получения и др.). При решении любой измерительной задачи важно иметь такие средства измерений, в которых реализованы выбранные принципы измерений. Например, температуру можно измерить платиновым термометром сопротивления (реализованный принцип измерения – зависимость сопротивления платины от температуры) и термоэлектрическим термометром (реализованный принцип – зависимость термо э.д.с. от разности температур). Безусловно, при разработке того или иного метода измерений принцип измерений влияет на выбор средств измерений. Но это не означает, что принцип измерения следует считать одним из компонентов при определении метода измерений. Таким образом, можно сказать, что метод измерения – это способ решения измерительной задачи, характеризуемый его теоретическим обоснованием и разработкой основных приёмов применения средств измерения.

Различные методы измерений отличаются, прежде всего, организацией сравнения измеряемой величины с единицей измерения. С этой точки зрения все методы измерений в соответствии с ГОСТ 16263 подразделяются на две группы (рис. 1.4): методы непосредственной оценки и методы сравнения. Методы сравнения в свою очередь включают в себя метод противопоставления, дифференцированный метод, метод замещения, нулевой метод и метод совпадения.

При методе непосредственной оценки значение измеряемой величины определяют непосредственно по отсчётному устройству измерительного прибора прямого действия (измерительный прибор, в котором предусмотрено одно или несколько преобразований сигнала измерительной информации в одном направлении, т.е. без обратной связи). На этом методе основаны все показывающие (стрелочные) приборы (вольтметры, амперметры, индикаторы, манометры, термометры, тахометры и т.п.). Следует отметить, что при использовании данного метода измерений мера как вещественное воспроизведение единицы измерения, как правило, непосредственно в процессе измерения не участвует. Сравнение измеряемой величины с единицей измерения осуществляется косвенно путём предварительной градуировки измерительного прибора с помощью образцовых мер или образцовых измерительных приборов. Точность измерений по методу непосредственной оценки в большинстве случаев невелика и ограничивается точностью применяемых измерительных приборов.

Метод сравнения с мерой – это такой метод измерений, в котором измеряемую величину сравнивают с величиной, воспроизводимой мерой. Примеры этого метода: измерение массы на рычажных весах с уравновешиванием гирями; измерение напряжения постоянного тока на компенсаторе сравнением с э.д.с. нормального элемента; измерение диаметра вала индикатором при настройке его на ноль по концевым мерам длины. ГОСТ 16263 предусматривает пять методов измерений, основанных на сравнении с мерой.

Метод противопоставления – это метод сравнения с мерой, в котором измеряемая величина и величина воспроизводимая с мерой, одновременно воздействуют на прибор сравнения, с помощью которого устанавливается соотношение между этими величинами. Например, измерение массы на равноплечих весах с помощью измеряемой массы и уравновешивающих её гирь на двух чашках весов

Дифференциальный метод – это метод сравнения с мерой, в котором на измерительный прибор воздействует разность измеряемой величины и известной величины, воспроизводимой мерой. Например, измерения деталей при настройке индикатора по концевым мерам длины

Нулевой метод измерений – это метод сравнения с мерой, в котором результирующий эффект воздействия величин на прибор сравнения доводят до нуля. Например, измерения электрического сопротивления мостом с полным его уравновешиванием. Нулевой метод позволяет получить высокую точность измерения.

Методом замещения называется метод сравнения с мерой, в котором измеряемую величину замещают известной величиной, воспроизводимой мерой. Это, например, взвешивание поочерёдным помещением массы и гирь на одну и ту же чашку весов. Метод замещения можно рассматривать как разновидность дифференциального и нулевого метода, отличающиеся тем, что сравнение измеряемой величины с мерой производится разновремённо.

Метод совпадений – это метод сравнения с мерой, в котором разность между измеряемой величиной и величиной, воспроизводимой мерой измеряют, используя совпадения отметок шкал или периодических сигналов. Примерами этого метода являются измерения длин с помощью штангенциркуля, или измерение частоты вращения стробоскопом, где наблюдают совпадения положения какой-либо метки на вращающемся объекте в момент вспышек известной частоты.

Все методы измерений могут осуществляться контактным способом, при котором измерительные поверхности прибора взаимодействуют с проверяемым изделием, или бесконтактным способом, при котором взаимодействия нет. Например, измерение диаметра вала штангенциркулем осуществляется контактным способом, а измерение параметров резьбы на инструментальном микроскопе – бесконтактным способом.

 

Различия в методах сравнения измеряемой величины с мерой находят свое отражение и в принципах построения измерительных приборов.

С этой точки зрения различают измерительные приборы прямого действия и приборы сравнения.

В измерительном приборе прямого действия предусмотрено одно или несколько преобразований сигнала измерительной информации в одном направлении, т.е. без обратной связи.

Измерительный прибор сравнения предназначен для непосредственного сравнения измеряемой величины с величиной, значение которой известно.

Следует отметить, что сравнение измеряемой величины с мерой в приборах сравнения может осуществляться либо одновременно (нулевой метод), либо разновременно (метод замещения).

 

 


Научные

-Повышение эффективности и качества научных результатов за счет более полного исследования моделей

-Повышение точности и достоверности результатов исследований за счет оптимизации эксперимента.

-Получение качественно новых научных результатов, невозможных без ЭВМ.

Технические

-Повышение качества продукции за счет повторяемости операций, увеличения числа измерений и получения более полных данных о свойствах изделий.

-Повышение надежности изделий за счет получения более полных данных о процессах старения и их предшественниках.

Экономические

-Экономия трудовых ресурсов за счет замены труда человека трудом машины.

-Сокращение затрат в промышленности за счет уменьшения трудоемкости работ.

-Повышение производительности труда на основе оптимального распределения работ между человеком и машиной и ликвидации неполной загрузки при эпизодическом обслуживании объекта.

Социальные

-Повышение интеллектуального потенциала за счет поручения рутинных операций машине.

-Ликвидация случаев занятости персонала операций в нежелательных условиях.

-Освобождение человека от тяжелого физического труда и использование сэкономленного времени для удовлетворения духовных потребностей.

 

 


Виды измерений.

Измерения классифицируют:

- по общим приёмам получения результатов измерений – прямые, косвенные, совместные, совокупные;

-по выражению результата измерений – абсолютные, относительные;

-по характеристики точности – равноточные, неравноточные;

-по числу измерений в серии – однократные, многократные;

-по отношению к изменению измеряемой величины – статические, динамические;

-по метрологическому назначению – технические, метрологические.

Прямое измерение – измерение, при котором искомое значение величины находят непосредственно из опытных данных. Например, измерение температуры воздуха термометром, силы тока – амперметром, диаметра вала – микрометром и т.п.

Косвенное измерение – это измерение, при котором искомое значение величины находят на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям. При этом числовое значение искомой величины определяется по формуле:

z=f(a1, a2,…, am), где: z - значение искомой величины; a1, a2,…, am – значение непосредственно измеряемых величин. Пример. Определение плотности p тела цилиндрической формы (рис. 1.3, б) на основании прямых измерений его массы m, диаметра d и высоты h - p=4m / (π·d2·h).

Совместные измерения – это производимые одновременно измерения двух или нескольких не одноименных величин для нахождения зависимости между ними. Например, на основании одновременных измерений приращений Δl длины детали в зависимости от изменений Δt его температуры (не одноименных величин) определяют коэффициент К линейного расширения материала образца: К=Δl/(l*Δt).

К совокупным измерениям относятся производимые одновременно измерения нескольких одноимённых величин, при которых искомые значения величин находят решением системы уравнений, получаемых при прямых измерениях различных сочетаний этих величин. К совокупным относятся, например, измерения, при которых массы отдельных гирь набора находят при известной массе одной из них и по результатам прямых измерений (сравнений) масс различных сочетаний гирь.

Абсолютное измерение – измерение, приводящее к значению измеряемой величины, выраженному в её единицах. Например, при измерении силы электрического тока амперметром или длины детали микрометром результат измерения выражается в единицах измеряемых величин (в амперах и миллиметрах).

Относительное измерение – измерение отношения величины к одноимённой величине, играющей роль единицы, или измерение величины по отношению к одноимённой величине, принимаемой за исходную. Относительное измерение основано на сравнение измеряемой величины с известным значением меры. Исходную величину при этом находят алгебраическим суммированием размера меры и показаний прибора. Например, контроль калибра пробки на вертикальном оптиметре.

Равноточные измерения – ряд измерений какой-либо величины, выполненных одинаковыми по точности средствами измерений в одних и тех же условиях. Например, измерение диаметра вала гладким микрометром и индикаторной скобой.

Неравноточные измерения – ряд измерений какой-либо величины, выполненных различными по точности средствами измерений и (или) в разных условиях.

Однократное измерение – измерение, выполненное один раз. Например, измерение конкретного момента времени по часам. В ряде случаев, когда нужна большая уверенность в получаемом результате, одного измерения оказывается недостаточно. Тогда выполняется два, три и более измерений одной и той же конкретной величины. В таких случаях допускается выражение: “двукратное измерение”, “трёхкратное измерение” и т.д.

Многократное измерение – измерение одной и той же физической величины, когда результат получают из нескольких следующих друг за другом измерений, т.е. измерение, состоящее из ряда однократных измерений. При числе отдельных измерений n>4, ряд измерений может быть обработан в соответствии с требованиями математической статистики. Следовательно, при четырёх измерениях и более измерение можно считать многократным. За результат многократного измерения обычно принимают среднеарифметическое значение из результатов однократных измерений, входящих в ряд.

Статическое измерение – измерение физической величины, принимаемой в соответствии с конкретной измерительной задачей за неизменную на протяжении времени измерения. Например, измерение длины детали при нормальной температуре, измерение размеров земельного участка.

Динамические измерения – измерения физической величины, размер которой изменяется с течением времени. Быстрое изменение размеров измеряемой величины требует её измерения с точной фиксацией момента времени. Например, измерение расстояния до уровня земли со снижающегося самолёта.

Технические измерения – измерения при помощи рабочих средств измерений. Технические измерения выполняются с целью контроля и управления научными экспериментами, контроля параметров изделий, технологических процессов, управления движением различных видов транспорта, диагностики заболеваний, контроля загрязнённости окружающей среды и т.п. Например, измерение давления пара в котле при помощи манометра, измерение ряда физических величин, характеризующих технологический процесс.

Метрологические измерения – измерения при помощи эталонов и образцовых средств измерений с целью воспроизведения единиц физических величин при передачи их размера рабочим средствам измерений. Например, при поверке образцовых мер магнитной индукции 3-го разряда на поверочной установке осуществляются измерения образцовым тесламетром 2-го разряда размера величины, воспроизведённой мерой. Эти измерения производятся с метрологической целью, т.е. являются метрологическими.

 


 

Принцип и методы измерений.

Любые измерения представляют собой физический эксперимент, выполнение которого основано на использовании тех или иных физических явлений. Совокупность физических явлений, на которых основаны измерения, называются принципом измерения.

Совокупность приёмов использования принципов и средств измерения составляет метод измерения.

Выбор того или иного метода измерений зависит от измерительной задачи, которую следует решать (точность результата измерений, быстрота его получения и др.). При решении любой измерительной задачи важно иметь такие средства измерений, в которых реализованы выбранные принципы измерений. Например, температуру можно измерить платиновым термометром сопротивления (реализованный принцип измерения – зависимость сопротивления платины от температуры) и термоэлектрическим термометром (реализованный принцип – зависимость термо э.д.с. от разности температур). Безусловно, при разработке того или иного метода измерений принцип измерений влияет на выбор средств измерений. Но это не означает, что принцип измерения следует считать одним из компонентов при определении метода измерений. Таким образом, можно сказать, что метод измерения – это способ решения измерительной задачи, характеризуемый его теоретическим обоснованием и разработкой основных приёмов применения средств измерения.

Различные методы измерений отличаются, прежде всего, организацией сравнения измеряемой величины с единицей измерения. С этой точки зрения все методы измерений в соответствии с ГОСТ 16263 подразделяются на две группы (рис. 1.4): методы непосредственной оценки и методы сравнения. Методы сравнения в свою очередь включают в себя метод противопоставления, дифференцированный метод, метод замещения, нулевой метод и метод совпадения.

При методе непосредственной оценки значение измеряемой величины определяют непосредственно по отсчётному устройству измерительного прибора прямого действия (измерительный прибор, в котором предусмотрено одно или несколько преобразований сигнала измерительной информации в одном направлении, т.е. без обратной связи). На этом методе основаны все показывающие (стрелочные) приборы (вольтметры, амперметры, индикаторы, манометры, термометры, тахометры и т.п.). Следует отметить, что при использовании данного метода измерений мера как вещественное воспроизведение единицы измерения, как правило, непосредственно в процессе измерения не участвует. Сравнение измеряемой величины с единицей измерения осуществляется косвенно путём предварительной градуировки измерительного прибора с помощью образцовых мер или образцовых измерительных приборов. Точность измерений по методу непосредственной оценки в большинстве случаев невелика и ограничивается точностью применяемых измерительных приборов.

Метод сравнения с мерой – это такой метод измерений, в котором измеряемую величину сравнивают с величиной, воспроизводимой мерой. Примеры этого метода: измерение массы на рычажных весах с уравновешиванием гирями; измерение напряжения постоянного тока на компенсаторе сравнением с э.д.с. нормального элемента; измерение диаметра вала индикатором при настройке его на ноль по концевым мерам длины. ГОСТ 16263 предусматривает пять методов измерений, основанных на сравнении с мерой.

Метод противопоставления – это метод сравнения с мерой, в котором измеряемая величина и величина воспроизводимая с мерой, одновременно воздействуют на прибор сравнения, с помощью которого устанавливается соотношение между этими величинами. Например, измерение массы на равноплечих весах с помощью измеряемой массы и уравновешивающих её гирь на двух чашках весов

Дифференциальный метод – это метод сравнения с мерой, в котором на измерительный прибор воздействует разность измеряемой величины и известной величины, воспроизводимой мерой. Например, измерения деталей при настройке индикатора по концевым мерам длины

Нулевой метод измерений – это метод сравнения с мерой, в котором результирующий эффект воздействия величин на прибор сравнения доводят до нуля. Например, измерения электрического сопротивления мостом с полным его уравновешиванием. Нулевой метод позволяет получить высокую точность измерения.

Методом замещения называется метод сравнения с мерой, в котором измеряемую величину замещают известной величиной, воспроизводимой мерой. Это, например, взвешивание поочерёдным помещением массы и гирь на одну и ту же чашку весов. Метод замещения можно рассматривать как разновидность дифференциального и нулевого метода, отличающиеся тем, что сравнение измеряемой величины с мерой производится разновремённо.

Метод совпадений – это метод сравнения с мерой, в котором разность между измеряемой величиной и величиной, воспроизводимой мерой измеряют, используя совпадения отметок шкал или периодических сигналов. Примерами этого метода являются измерения длин с помощью штангенциркуля, или измерение частоты вращения стробоскопом, где наблюдают совпадения положения какой-либо метки на вращающемся объекте в момент вспышек известной частоты.

Все методы измерений могут осуществляться контактным способом, при котором измерительные поверхности прибора взаимодействуют с проверяемым изделием, или бесконтактным способом, при котором взаимодействия нет. Например, измерение диаметра вала штангенциркулем осуществляется контактным способом, а измерение параметров резьбы на инструментальном микроскопе – бесконтактным способом.

 

Различия в методах сравнения измеряемой величины с мерой находят свое отражение и в принципах построения измерительных приборов.

С этой точки зрения различают измерительные приборы прямого действия и приборы сравнения.

В измерительном приборе прямого действия предусмотрено одно или несколько преобразований сигнала измерительной информации в одном направлении, т.е. без обратной связи.

Измерительный прибор сравнения предназначен для непосредственного сравнения измеряемой величины с величиной, значение которой известно.

Следует отметить, что сравнение измеряемой величины с мерой в приборах сравнения может осуществляться либо одновременно (нулевой метод), либо разновременно (метод замещения).

 

 


Классификация средств измерений.

Средство измерений – это техническое средство, используемое при измерениях и имеющее нормированные метрологические свойства. Это определение соответствует ИСО и МЭК, согласно которым средство измерений – это устройство, предназначенное для выполнения измерений “само по себе” или с применением другого оборудования.

Классификация видов средств измерений приведена на рис.

Однозначная мера – это мера, воспроизводящая физическую величину одного размера. Например, гиря, плоскопараллельная концевая мера длины, измерительный резистор, конденсатор постоянной ёмкости и т.п.

Многозначная мера – мера, воспроизводящая ряд одноимённых величин различного размера. Например, штриховая мера длины, конденсатор переменной ёмкости и т.п.

Набор мер – специально подобранный комплект мер, применяемых не только по отдельности, но и в различных сочетаниях с целью воспроизведения ряда одноимённых величин различного размера. Например, набор гирь, набор плоскопараллельных концевых мер длины, набор угловых

мер, набор измерительных конденсаторов и т.п.

Измерительный прибор – средство измерений, предназначенное для выработки сигнала измерительной информации в форме, доступной для непосредственного восприятия наблюдателем. Как правило, измерительный прибор имеет устройства для преобразования измеряемой величины в сигнал измерительной информации и его индикации в форме, наиболее доступной для восприятия. Устройства для индикации часто содержат шкалу со стрелкой или другим указателем, диаграмму с пером или цифровой указатель, благодаря чему можно отсчитывать показания или регистрировать значения физической величины. В случае сопряжения прибора с ЭВМ отсчёт производят при помощи монитора.

Различают следующие типы измерительных приборов. Аналоговый измерительный прибор – это прибор, показания которого являются непрерывной функцией изменений измеряемой величины. Цифровой измерительный прибор – это измерительный прибор, автоматически вырабатывающий дискретные сигналы измерительной информации, показания которого представлены в цифровой форме.

Измерительный преобразователь – средство измерений, предназначенное для выработки сигнала измерительной информации в форме, удобной для передачи, дальнейшего преобразования, обработки и (или) хранения, но не поддающейся непосредственному восприятию наблюдателем. Обычно измерительные преобразователи входят в состав измерительных приборов, установочных систем и др. в качестве важнейшего устройства, от которого зависят точностные характеристики.

Вспомогательное средство измерений – это средство измерений величин, влияющих на метрологические свойства другого средства измерений при его применении или поверке. Например, термометр для измерения температуры газа в процессе измерений объёмного расхода этого газа.

Измерительная установка – это совокупность функционально объединенных средств измерений (мер, измерительных приборов, измерительных преобразователей) и вспомогательных устройств, предназначенная для выработки сигналов измерительной информации в форме, удобной для непосредственного восприятия наблюдателем и расположенная в одном месте. Например, установка для измерений удельного сопротивления электротехнических материалов, установка для испытаний магнитных материалов.

Измерительную установку с включенными в неё образцовыми средствами измерений называют поверочной установкой, измерительную установку, входящую в состав эталона – эталонной, установку, предназначенную для испытаний каких-либо изделий, иногда называют испытательным стендом. Некоторые виды измерительных установок получили название измерительных машин.

Измерительная система – совокупность средств измерения (мер, измерительных приборов, измерительных преобразователей) и вспомогательных устройств, соединённых между собой каналами связи, предназначенная для выработки сигналов измерительной информации в форме, удобной для автоматической обработки, передачи и (или) использования в автоматических системах управления. Например, измерительная система теплоэлектростанции позволяет получать измерительную информацию о ряде физических величин в разных энергоблоках. Или с помощью радионавигационной системы, состоящей из ряда функционально объединенных измерительных комплексов, разнесённых в пространстве на значительное расстояние, определяют местоположение судов.

В зависимости от назначения измерительные системы разделяют на измерительные информационные, измерительные контролирующие, измерительные управляющие и др. Измерительную систему, снабжённую средствами автоматического получения и обработки измерительной информации, называют автоматической измерительной системой.

Измерительно-вычислительный комплекс – функционально объединённая совокупность средств измерений, ЭВМ и вспомогательных устройств, предназначенных для выполнения в составе конкретной измерительной задачи.

По назначению приборы делятся на универсальные, предназначенные для измерения одинаковых физических величин различных объектов, и специализированные, используемые для измерения параметров однотипных изделий.

По принципу действия, который положен в основу измерительной системы, приборы подразделяют на механические, оптические, оптико-механические, пневматические, электрические, рентгеновские, лазерные и др.



Поделиться с друзьями:

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.065 с.