Правила символического исчисления — КиберПедия 

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Правила символического исчисления

2017-06-02 292
Правила символического исчисления 0.00 из 5.00 0 оценок
Заказать работу

1. Оператор Гамильтона, примененный к сумме или разности каких-то скалярных или векторных функций, равен сумме или разности соответствующих операций, проведенных над отдельными функциями.

2. Применяя операцию дифференцирования в символическом исчислении к произведению скалярных или векторных функций, нужно поступать так же, как это делается при обычном дифференцировании, т.е. произведение дифференцируется столько раз, сколько в нем содержится переменных сомножителей.

При этом каждый раз только один из сомножителей рассматривается как переменный, а остальные принимаются постоянными.

3. Постоянный множитель можно вынести за знак .

Однако выносить можно лишь постоянный скаляр, а не вектор.

Если под знаком оказывается постоянный вектор, то произведение символического вектора набла на данный вектор надо так преобразовать по правилам действия над векторами, чтобы этот вектор оказался перед знаком и оператор Гамильтона () действовал бы только на переменную величину, стоящую за ним.

4. Операция деления на вектор отсутствует. Операция деления на скаляр всегда можно представить как умножение на скаляр, обратный данному.

Примечание:

Ньютон:

… при изучении наук примеры бывают полезнее правил.

3.3.3. Примеры, имеющие самостоятельное значение

1. (3.24)

(операция дивергенции, примененная к произведению скаляра на вектор, каждый из которых есть переменная величина).

В соответствии с правилами производная от произведения равна сумме производных, т.е.

(3.25)

здесь малые буквы (m и ) обозначают переменные величины, а большие буквы (M и ) – величины, которые временно рассматриваются как постоянно.

Вынесем скаляр M за знак (дифф-я), а во втором слагаемом оператор (Гамильтона) будем рассматривать как обычный вектор. Тогда есть просто скалярное произведение двух векторов, величина которого не меняется от перестановки сомножителей.

Значит, в процессе преобразования и постоянный вектор оказался как бы вынесенным за знак производной.

Т.о. в результате такого преобразования получили новый оператор дифференцирования ( ) …, который в отличие от является скалярным, а не векторным.

Примечание:

Для преобразования членов ( ) и ( ) необходимо искать формулы в векторной алгебре, которые включали бы комплексы типа ().

Оказывается, что такой комплекс есть в разложении двойного векторного произведения: () = ( + () .

После проведения преобразований величины, принятые временно как постоянные, будем (можно) снова считать переменными.

Т.о. равенство (3.25) можно записать:

(3.26)

Замечание:

Т.к. после введения нами нового оператора дифференцирования ( )… стоит переменная скалярная величина, то скобки, охватывающие этот оператор, можно не ставить.

Если бы за знаком ( )… следовал вектор, то они (скобки) были бы обязательны. В противном случае выражение , и так: ( , а про правилам действия над векторами .

Т.о. окончательно выражение (3.26) можно записать:

(3.27)

2. Найдем выражение для grad (), где и переменные векторы.

первый шаг: запишем:

(*)

Здесь мы не имеем права, как в предыдущем примере, делать преобразования вида:

т.к. знаки равенства в этих выражениях незаконны из-за справедливости .

Из векторной алгебры известно:

Т.о. заменив в этом отношении вектор на оператор Гамильтона , получим для первого слагаемого равенства (*) такое выражение:

Аналогично представляется и второе слагаемое (*):

Наконец, считая все векторы вновь переменными, запишем следующую зависимость:

(3.28)

Замечание 1:

В дальнейшем нас будет интересовать лишь частный случай этой формулы, когда оба вектора и равны вектору скорости.

Т.о из выр-я (3.28) автоматически получаем:

(3.29)

Замечание 2:

Введенные нами величины ( )… и … являются дифференциальными операторами первого порядка, причем один из этих операторов векторный, а другой – скалярный. Они как бы символизируют первую производную от функции пространственных переменных.

Примечание:

Рассмотренные рассуждения о лапласиане, дивергенции, градиенте и т.д. (полезно) необходимо помнить при чтении основных уравнению гидродинамики. Тогда, записанные в символах векторного анализа, они (эти уравнения) приобретают свойственную им физическую простоту и ясность.


Поделиться с друзьями:

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.011 с.