Сигналы далеких землетрясений — КиберПедия 

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Сигналы далеких землетрясений

2023-01-02 79
Сигналы далеких землетрясений 0.00 из 5.00 0 оценок
Заказать работу

 

18 апреля 1889 года прибор, предназначенный для наблюдения приливов в земной коре, воспринял какие‑то отрывистые и непонятные сигналы. Таинственная сигнализация длилась более полутора часов. Научные сотрудники, обслуживавшие прибор, недоумевали.

Загадка вскоре разъяснилась. Телеграф принес известие о сильном землетрясении, которое произошло в Японии. Колебания земной коры, возникшие в Тихом океане, достигли Европы, преодолев более 9000 километров, и тут их воспринял чувствительный прибор.

Академик Б. Б. Голицын оценил громадное значение этого случайного наблюдения. Он сконструировал прибор, предназначенный для записи колебаний, вызванных землетрясением. Прибор Голицына получил название сейсмограф – «записывающий толчки».

С помощью своих сейсмографов Голицын изучал, как распространяются колебания, вызванные землетрясением. Оказалось, что сейсмограф, расположенный в районе подземной катастрофы, записывает толчков меньше, чем сейсмографы, установленные в нескольких тысячах километров от очага землетрясения. Если ближний воспримет один толчок, то дальние отметят два, три и даже четыре толчка.

Два типа сейсмографов и образцы сейсмограмм. На нижней кривой – запись землетрясения 16 ноября 1927 года, происшедшего в группе Алеутских островов.

 

Исследования Голицына показали – эти дополнительные «добавочные» и более слабые толчки – не что иное, как «подземное эхо» – отражение колебаний от глубинных слоев Земли.

В конце ноября 1906 года в подвале Пулковской обсерватории устроили сейсмическую станцию. В течение первых же сорока дней наблюдений было зарегистрировано 14 землетрясений. При этом выяснилось огромное превосходство сейсмографов Голицына над всеми другими приборами этого типа, которые были построены в других странах. В настоящее время все сейсмические станции мира снабжаются усовершенствованными сейсмографами Голицына.

Уже в 1906 году было установлено, что отраженные колебания – эхо далеких землетрясений – приходят с глубины в 106 и в 492 километра. Очевидно на этих глубинах расположены границы слоев, где плотность горных пород резко меняется.

Следовательно, Земля имеет слоистое строение, и плотность Земли возрастает с глубиной не равномерно, а ступенями – скачками, от слоя к слою.

Земной шар имеет внутри сложное, слоистое строение.

 

Сейсмограф позволяет вскрывать внутреннее строение земного шара, находить границы слоев, определять плотность пород в недосягаемой глубине.

«Землетрясение подобно лучу света, ярко вспыхивающему на мгновение, чтобы осветить недоступные нам глубины земного шара», – писал академик Голицын.

Чтобы не ждать, когда землетрясение поможет заглянуть вглубь, ученые стали делать искусственные землетрясения – взрывать крупные заряды динамита или аммонала и с помощью сейсмографов, заранее расставленных на разных расстояниях от места взрыва, улавливать подземное эхо.

Таким путем было установлено, что в Земле можно различить четыре основных слоя: первый слой – это земная кора, очень сложного и тоже слоистого строения, толщиной, примерно, в 492 километра. Плотность горных пород, составляющих наружную оболочку Земли, равна 2,6.

Второй слой – промежуточный – простирается на глубину до 1200 километров. Его плотность постепенно возрастает до 5. Третий слой – оболочка ядра – имеет в толщину 1700 километров, и его плотность, равная 5, почти не изменяется вплоть до ядра.

Ядро нашей планеты имеет форму шара радиусом в 3478 километров, или, иначе говоря, граница ядра лежит на глубине в 2900 километров от поверхности Земли. Именно на этом расстоянии плотность резко, скачком возрастает с 5 до 9,6. И многие признаки говорят, что вещество в ядре твердое, но оно находится не в кристаллическом, а в стекловидном состоянии. Вещества же, подобные стеклу или смоле, то есть твердые, но не кристаллические, называются в науке твердыми жидкостями.

Колебания, порожденные землетрясением, проходя сквозь ядро земного шара, отклоняются от своего пути и тем самым указывают размеры этого ядра.

 

Одновременно с исследованиями сейсмологов ученые вулканологи установили, что очаги расплавленной магмы, над которыми образуются огнедышащие горы, расположены на сравнительно небольшой глубине в 30–60 километров. И они действительно представляют собой отдельные очаги, то есть нечто вроде котлов с лавой, не связанных друг с другом. Случается, что вулканы, расположенные вплотную друг к другу, действуют совершенно независимо один от другого.

Видимо, вулканические извержения – явления местные, происходящие в верхнем слое земной коры. В центре Земли никакой расплавленной магмы нет.

Кроме геофизиков, исследованиями недоступных глубин земного шара занимались и астрономы.

Они наблюдали ежегодные перемещения северного полюса по поверхности Земли.

Полюс не остается всегда в одной точке, он движется, описывая вокруг среднего своего положения небольшие неправильной формы петли.

Это движение полюсов еще в XVIII веке предвидел петербургский академик и величайший математик своего времени Леонард Эйлер. Он указал, что имей Земля твердость большую, чем у алмаза, полюса на ней должны были бы перемещаться с периодом в 304 суток. Если же период передвижения полюса окажется больше 304 суток, то твердость Земли будет соответственно меньше.

Движение полюса по земной поверхности за 6 лет – с 1912 года по 1918 год.

 

Для стального шара, величиной с нашу планету, период перемещения полюсов должен составить, примерно, 450 суток.

В те годы замечательное предвидение Эйлера проверить не было возможности: астрономические приборы еще не достигли нужного совершенства. Только в начале XX века выяснилось, что полюс завершает каждую свою петлю в течение 433 суток. Следовательно, Земля по твердости уступает алмазу, но превышает сталь!

В 1913 году ученые нашли третье доказательство необычайной твердости Земли. Была измерена высота приливной волны, подымающейся в твердой земной коре.

Если бы Земля была внутри жидкой, то высота приливной волны на суше достигала 75 сантиметров. А этого нет. Приливная волна на суше не превышает 25 сантиметров. Земля, следовательно, тверда и, как показывают расчеты, сделанные после измерения высоты «сухопутных» приливов, твердость Земли превышает твердость стали.

Гипотезу об огненно‑жидком ядре Земли беспощадной критике подверг замечательный русский астроном Ф. А. Бредихин. Он указал, что исследования геофизиков и астрономов приводят к одному результату – Земля внутри тверда.

В последние годы было замечено, что некоторые землетрясения происходят на очень большой глубине, – примерно в восьмистах километрах ниже уровня моря. Это также доказывает, что в глубине Земля тверда – ведь в пластичной, текучей массе никакие напряжения и сотрясения возникать не могут.

Основываясь на всех этих фактах, академик В. И. Вернадский писал: «Все представления о некогда существовавшем огненно‑жидком или расплавленном состоянии планеты, бывшем или ныне существующем, внесены в науку в связи с чуждым ей по существу теологическим,[15] философским и космогоническим представлениями о мире, не поддерживаемыми известными сейчас научными фактами».

Гипотеза огненно‑жидкого состояния земных недр была оставлена.

Таким образом, одна половина загадки земных недр разрешилась, а вторая осталась. Какова же температура в глубине? Высокой она быть не может, потому что Земля тверда, как сталь. И низкой она не может быть, так как уже на глубине в 30–60 километров располагаются большие лавовые очаги, питающие вулканы. Температура лавы составляет 1100–1150°, а иногда даже 1400°.

Чтобы объяснить это противоречие, оставалось предположить единственное: самый жаркий пояс в глубине Земли лежит недалеко от поверхности.

Температура возрастает только до определенной глубины. Затем начинается зона более или менее равномерной температуры, и эта зона простирается вплоть до центра Земли.

Повидимому это так и есть, но почему – никто объяснить не мог.

 

Радиоактивное «топливо»

 

В прошлом столетии ученые обнаружили еще одно странное противоречие.

Физики, повторявшие опыт Бюффона, убедились, что этот ученый ошибся. Землю нельзя уподобить металлическому шару. Когда Земля покрылась твердой корой, ее охлаждение замедлилось, ведь земная кора – плохой проводник тепла. Но даже с учетом плохой теплопроводности коры охлаждение Земли могло длиться только сорок миллионов лет.

Земля, мы знаем, гораздо старше, и тем не менее она до сих пор не остыла. Очевидно, в ее недрах есть какой‑то источник тепла, есть «печка», которая подогревает нашу планету изнутри. Что за «печка», никто не мог догадаться.

Было только подсчитано, что каждый квадратный метр поверхности Земли отдает за год 540 калорий. Это не очень много. Но ведь должен же где‑то быть источник этого тепла!

Загадки земного тепла разрешились с открытием радиоактивности. Среди горных пород земной коры имеются минералы, которые содержат уран, торий, актиний, радий, протактиний, калий. Эти элементы, распадаясь, выделяют теплоту и подогревают земные недра.

Ученые попробовали подсчитать, велики ли на Земле запасы этого своеобразного топлива.

Залежи руд радиоактивных металлов имеются во многих районах земного шара. Кроме того, частицы урана, радия, тория в небольших количествах рассеяны почти повсеместно. Есть они в почве, в гранитах и базальтах, в океанской воде.

Основным поставщиком тепла является радий. В среднем на каждую тонну породы приходится несколько ничтожно маленьких пылинок радия, общим весом в одну миллионную долю грамма. Но ведь земной шар весит 6·1021 тонн. Сколько же в нем радия?

В результате подсчета запасов радиоактивных элементов получилось нечто непонятное.

Если радиоактивные элементы распределены равномерно по всей массе земного шара и содержатся в таком же количестве, в каком их находят в земной коре, то непонятно, почему земной шар до сих пор не расплавился.

Словом, по этим расчетам выходило, что радиоактивные элементы должны давать больше тепла, чем они дают его на самом деле. Получилась явная несуразица. Для объяснения замеченного противоречия оставалось допустить только одно: радиоактивные элементы распределены в Земле неравномерно – в глубине их меньше, чем в наружных слоях.

Для проверки этого предположения ученые обратились к вулканам. Они исследовали химический состав лав. И оказалось, – если лава подымается из глубоких очагов, – она несет ничтожное количество радиоактивных элементов, если же лава поступает из верхних слоев земной коры, то радиоактивных элементов в ней содержится гораздо больше.

Следовательно, глубочайшие недра Земли бедны ураном, торием и актинием. Подавляющая масса радиоактивных элементов скопилась недалеко от поверхности, примерно, на глубине 15–20 километров. Почему это так – неизвестно, но факт неоспоримый: радиоактивная «печка» находится не в центре Земли, а в земной коре. Земной шар подогревает наружная оболочка.

Итак, в распоряжении ученых оказались два важных факта: Земля внутри тверда и не очень горяча.

 

Земля не была звездой

 

У геологов и астрономов закралось подозрение, что центральное ядро нашей планеты всегда было твердым, что Земля зародилась, как твердое тело, и никогда не проходила стадию огненно‑жидкого или газообразного клубка. Земля никогда не была звездой.

Эта новая мысль с трудом пробивала себе дорогу. На протяжении двух столетий люди верили, что Земля – дочь Солнца. Так учили в школе, так утверждали почти все космогонические гипотезы. И вдруг это привычное суждение оказалось сомнительным. Последние научные открытия лишили его опоры.

Сторонники старых гипотез не сдавались. Они подыскивали новые доказательства в свою пользу.

Но что же можно привести в защиту «дочерних прав» Земли и «отцовских» – Солнца?

Внутренний жар Земли? Его нет. Источник земной теплоты находится не в ядре планеты, а в ее коре. То тепло, каким обладает Земля, дает ей распад радиоактивных элементов и другие химические и физические процессы, происходящие во внешних оболочках земного шара.

Земля остывает? Да! От нескольких тысяч вулканов, которые когда‑то действовали, теперь осталось только 318 действующих, да 112 курящихся. Потух Казбек, успокоился Эльбрус, и сотни других огнедышащих гор не подают никаких признаков подземной деятельности.

Бесспорно, Земля остывает, но не потому, что иссякают запасы тепла, сохранившиеся в Земле от ее рождения. Атомы радиоактивных элементов распадаются, количество их уменьшается. В нашей «печке прогорают дрова». Через 4,5 миллиарда лет урана и радия в земной коре станет вдвое меньше. Утихнут и другие процессы, рождающие теплоту. И тогда, возможно, потухнут последние вулканы на Земле.

Доводы, основанные на примерах вулканической деятельности, не убедительны, ими не исчерпывается арсенал доказательств, как будто бы говорящих в пользу старой гипотезы.

Сторонники огненно‑жидкого состояния новорожденной Земли нашли еще один факт, которым они собирались доказать свою правому.

Химический состав Солнца и Земли почти одинаков, – говорили они, – небольшая разница заключается только в том, что на Солнце много легких газов – водорода и гелия, а на Земле их очень мало. Но именно это различие свидетельствует о высокой температуре нашей планеты на первом этапе ее существования.

В прошлом вулканическая деятельность на Земле была энергичнее.

 

Приверженцы «солнечного» происхождения Земли доказывали свою мысль о высокой температуре планет в далеком прошлом так: Земля и все остальные планеты, отделяясь от Солнца, получили «в приданое» большое количество водорода и гелия и всех других газов. И Земля и Венера достаточно массивны, и их тяготение настолько велико, что они могли сохранить легкие газы в своих атмосферах. Марс мог бы иметь гораздо больше водяных паров, а Меркурий и Луна по своей массе тоже способны удерживать небольшие воздушные оболочки, состоящие из сравнительно тяжелых и медлительных молекул кислорода, азота, углекислого газа и атомов аргона.

Однако, на Земле крайне мало легких газов – водорода и гелия, в атмосфере Венеры нет никаких признаков водяных паров. Марс, как мы знаем, очень беден водой и кислородом, а на Меркурии и на Луне газовые оболочки ничтожно малы.

Все это потому, что Земля, Венера, Марс, Меркурий и Луна были в далеком прошлом маленькими звездочками.

Под действием высокой температуры Земля потеряла большую часть легких газов, Венера и Марс лишились их почти полностью, а Меркурий и Луна растеряли вообще все газы.

Зато планеты‑великаны – Юпитер, Сатурн, Уран и Нептун настолько массивны, что даже в раскаленном состоянии удержали возле себя мощные атмосферы, состоящие преимущественно из водорода и водородных соединений – газов метана и аммиака.

Отсутствие газовой оболочки на маленьких планетах – Меркурии и Луне, крайняя бедность водородом Земли, Венеры и Марса, обилие водорода на больших планетах доказывает, что планеты были прежде сильно раскалены и состав их атмосфер будто бы изменился под влиянием высокой температуры.

Перед учеными встала задача проверить эти доказательства сторонников солнечного происхождения Земли и проследить судьбу водорода и гелия в атмосфере нашей планеты.

 

Похищение атомов гелия

 

Общая масса воздушной оболочки земного шара равняется 5,3·1015 тонн, то есть атмосфера составляет только одну миллионную долю массы Земли. Для такой планеты, как наша, эта атмосфера немного маловата. Земля по своей силе тяготения может удерживать больше воздуха.

Атмосфера непрерывно питается притоком газов из недр. Много газов выбрасывают вулканы, грязевые сопки и гейзеры. Газы подымаются со дна морей, озер и болот. Растения снабжают атмосферу кислородом. Много газов дают природные месторождения. Эти месторождения широко используются в народном хозяйстве Советского Союза. В 1951 году в СССР было добыто почти 9 кубических километров природного газа.

Крупным поставщиком газов являются промышленность и транспорт. Любой металлургический завод по количеству выбрасываемых в атмосферу газов не уступит среднему вулкану.

Приток газов в атмосферу велик, но она почему‑то до сих пор не увеличивается.

В одном из древнейших напластований земной коры геологи нашли любопытную окаменелость – кусок песчаника со следами дождевых капель.

Видимо, в этой местности 70 миллионов лет назад собирался дождь. Упали первые капли, они выбили в мелком песке характерные луночки‑углубления, но ветер пронес тучу стороной, луночки, оставленные дождевыми каплями, подсохли, их затянуло пылью, сверху отложились наносные породы. Грунтовые воды пропитали песок минеральными веществами, он окаменел и пролежал в земных недрах до 1950 года, когда этот кусок песчаника откопали.

Геологи и геофизики измерили глубину и ширину луночек, сравнили их с теми луночками, какие получаются в таком же песке в наши дни, и убедились, что за 70 миллионов лет плотность нашей атмосферы существенным образом не изменилась, так как капли доисторического дождя по своим размерам ничем не отличаются от современных дождевых капель. Значит Земля всегда имела такую же атмосферу, как и сейчас.

Объяснить неполный объем воздушной оболочки горячим состоянием Земли не удается. За три‑четыре миллиарда лет из недр планеты могло выделиться газов гораздо больше, чем нужно для пополнения атмосферы.

Не все поддается объяснению и в составе газов нашего воздуха. Воздух содержит 75,51 % азота, 23,01 % кислорода, 1,28 % аргона, 0,04 % углекислого газа, 0,0012 % неона, 0,0003 % криптона, а гелия только 0,00007 %. Кроме того в ничтожнейших количествах к воздуху примешаны ксенон, радон, аммиак, окиси азота, водород, пары ртути и йода. Странным кажется необычайная бедность атмосферы гелием.

Радиоактивные элементы: уран, радий, торий, актиний, присутствующие в земной коре, распадаясь, выделяют гелий. Каждый атом урана порождает 8 атомов гелия, а атом тория дает 7 атомов гелия. Гелий непрерывно поступает в атмосферу, он просачивается сквозь почву, выделяется при вулканических извержениях; казалось бы, гелий должен непрерывно накапливаться в атмосфере. Как показывают расчеты, в воздухе должно содержаться гелия раз в 12 больше, чем его имеется сейчас. Но он не накапливается, а куда‑то исчезает, повидимому, гелий уходит из атмосферы в межпланетное пространство.

Чтобы покинуть земной шар и вылететь в межпланетное пространство, космическому кораблю или отдельному атому надо развить скорость не меньше, чем в 11 200 метров в секунду. Это так называемая «скорость ускользания». На высоте в 1000 километров скорость ускользания меньше, чем у поверхности Земли, там она составляет 8300 метров в секунду.

Атомы гелия при температуре в 15° движутся со скоростью в 1235 метров в секунду. Но это их средняя скорость. Отдельные атомы могут двигаться раз в 5 быстрее, то есть их скорость достигает 6200 метров в секунду. Но это все же меньше скорости ускользания. Значит атомы гелия сами по себе покидать Землю не могут. Их что‑то похищает или им что‑то помогает улетучиваться в межпланетное пространство.

 

На границе земной атмосферы

 

Уже много лет подряд геофизики и метеорологи посылают разведчиков в верхние слои атмосферы. Для этой цели служат небольшие воздушные шары. Они подымают в заоблачную высь самопишущие приборы‑автоматы или маленькие радиосигнальные станции, изобретенные советским метеорологом П. А. Молчановым. С помощью воздушных шаров ученые исследовали атмосферу до высоты в 40 километров. Выше эти шары подыматься не могут. Для разведки более высоких слоев применены ракеты. Они залетают почти на границу земной атмосферы.

О температуре воздуха на большой высоте приборы‑разведчики принесли неожиданные сведения. Раньше думали, что чем дальше от поверхности, тем воздух холоднее. Оказалось не так: похолодание прекращается на высоте в 30–35 километров, затем начинается потепление. В 40 километрах над уровнем моря ультрафиолетовое излучение Солнца нагревает воздух до +30°, а на высоте в 50 километров – уже до +60°!

В еще более высоких и разреженных слоях температура воздуха, то есть, иначе говоря, скорость движения газовых молекул, еще выше. Там она уже превышает скорость ускользания. Молекулы и атомы газов, подгоняемые солнечными лучами, покидают Землю и пускаются в самостоятельное космическое путешествие.

Именно поэтому атмосфера Земли не так велика, как этого можно было бы ожидать. Высокая температура внешних слоев атмосферы не позволяет ей разрастаться сверх определенного предела. Вместе с частицами азота и кислорода и быстрее их улетучиваются легкие и подвижные атомы гелия. Вырвавшись из недр, они подымаются в заоблачную высь и навсегда расстаются с Землей.

Точно так же улетучивается и водород – его молекулы еще легче, еще подвижнее, чем атомы гелия.

Следовательно, нет нужды объяснять почти полное отсутствие водорода и гелия раскаленным состоянием Земли в далеком прошлом. Легкие газы – водород, гелий, азот, кислород, неон – и в наши дни уходят с «холодной» планеты.

Ученые, которые пытаются доказать, что планеты получили свои атмосферы «в приданое» от Солнца и что с тех пор, как Земля остыла, ее атмосфера не менялась, глубоко ошибаются. Они находятся во власти остатков того средневекового мировоззрения, которое господствовало в науке в XVIII веке.

 

Крах последнего довода

 

Самым главным доказательством происхождения Земли из вещества Солнца служило сходство химического состава обоих небесных тел.

Ученые проверили, действительно ли он одинаков.

Бесспорно, на Солнце нет особых солнечных веществ, а на Земле – земных. Вещество одинаково, но количество отдельных химических элементов различно. Академик В. Г. Фесенков первым указал, что сравнение химического состава Солнца и Земли дает космогонистам еще одну путеводную нить в далекое прошлое. Например, на Солнце больше всего водорода и гелия, а на Земле из газов больше всего кислорода и хлора.

На Солнце тоже есть кислород, там его примерно вдвое больше, чем азота, а в Земле кислорода в 10 тысяч раз больше, чем азота.

Это удивительное расхождение нельзя объяснить тем, что Земля почему‑либо не смогла захватить от Солнца полную норму азота. Точно так же нельзя предположить, что азот якобы был на Земле, но улетучился. Азот по атомному весу почти одинаков с кислородом, покидать Землю они могут только вместе. Следовательно, азота на нашей планете всегда было мало, и свой запас она приобрела не от Солнца.

И вот еще, что важно – такие «земные» газы, как кислород и хлор, химически очень активны, они легко вступают в соединения с металлами и образуют твердые вещества. Вся земная кора в основном состоит из окислов, то есть соединений кислорода с металлами: кремнезем – окись кремния, глинозем – окись алюминия. В глубоких слоях Земли много окислов магния и железа. Точно так же почти весь хлор на Земле связан с металлом натрием и образует мощные залежи поваренной соли.

Земля изобилует теми газами, какие могут входить в состав твердых тел, и бедна летучими газами, которые не способны образовывать твердые соединения. На Земле мало водорода, главное соединение которого – вода, мало азота, который неохотно вступает в химические соединения, почти совсем нет «ленивых» газов – гелия и неона, которые вообще не вступают в химические соединения.

Эта своеобразная и характерная особенность химического состава вещества Земли может быть объяснена только тем, что наша планета образовалась из твердых частиц, а не из газов. Именно поэтому она обладает преимущественно теми газами, какие могут входить в состав твердых частиц.

Даже то небольшое количество водорода, каким располагает Земля, могло быть принесено на нашу планету твердыми, металлическими частицами. Многие металлы, особенно такие, как платина и палладий, способны впитывать в себя водород более жадно, чем губка – воду. Например, кусочек палладия, погруженный в банку с водородом, заметно увеличивается в объеме, набухает, становится хрупким и растрескивается. Один кубический сантиметр палладия может вобрать в себя до 900 кубических сантиметров газа. Платина же впитывает водорода меньше – примерно сто объемов.

 

Удивительное сходство

 

Химический состав земной коры можно сравнивать не только с Солнцем. В распоряжении ученых есть образцы космического вещества – метеориты. Они более доступны для изучения, чем солнечные вещества. Кусок метеорита можно растолочь в ступке и исследовать по всем правилам лабораторной практики.

Начало химическому анализу метеоритов положил русский ученый И. Мухин. Еще в 1819 году в Петербурге он определил химический состав «палласова железа» – метеорита, привезенного академиком П. С. Палласом из Красноярского края.

Такие исследования делали многие ученые. Были испытаны тысячи образцов. И у всех ученых получились примерно одинаковые результаты.

Вот табличка, составленная академиком А. Е. Ферсманом. Для сравнения приведены также данные о химическом составе Земли.

 

Сходство химического состава Земли и метеоритов само бросается в глаза. Состав почти одинаков.

Геохимики первыми обратили внимание на любопытнейшую особенность химического состава Земли. Наша планета в основном сложена из четных элементов, то есть из элементов, у которых число Менделеева делится на два, а атомный вес – на четыре.

И химический состав метеоритов отличается тем же самым.

Почему это так, чем можно объяснить изобилие четных элементов, – пока еще неизвестно, это записано в памятную книжку науки как вопрос, над которым должны трудиться будущие поколения ученых.

Замеченный же факт убедительно доказывает родство Земли и метеоритов.

И это родство может быть объяснено только тремя явлениями: первое – метеориты произошли от планеты, похожей по химическому составу на Землю; второе – Земля и метеориты образовались из одного, и того же вещества; третье – Земля образовалась из метеоритов.

Каждый метеорит, яркой искоркой пролетая по небу, прибавляет крупинку к нашей Земле. Земной шар растет, он растет на наших глазах, собирая космический материал и тем увеличивая свою массу.

Не могут ли «падающие звезды» раскрыть нам тайну происхождения Земли.

Быть может Земля не дочь Солнца, а потомок пылинок?

Это заманчивое предположение казалось правдоподобным. И оно заслуживало проверки.

 


Поделиться с друзьями:

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.075 с.