Рентгеноэмиссионный и рентгеноабсорбционный методы. — КиберПедия 

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Рентгеноэмиссионный и рентгеноабсорбционный методы.

2022-10-29 66
Рентгеноэмиссионный и рентгеноабсорбционный методы. 0.00 из 5.00 0 оценок
Заказать работу

Рентгенофлуоресцентная спектроскопия, сущность метода, схема прибора.

Рентгеноэмиссионный метод – важное средство изучения минералов, горных пород, металлов, сплавов и многих других твердых объектов, прежде всего многофазных. Метод позволяет проводить анализ «в точке» (диаметр – до 500 нм и глубина вплоть до 1–2 микронов) или на участке поверхности за счет сканирования. Пределы обнаружения в этом случае обычно невелики, точность анализа оставляет желать лучшего, но как прием качественного и полуколичественного исследования включений и других неоднородностей электронный зонд давно завоевал общее признание. Несколько фирм производили и производят соответствующие приборы, в том числе приборы-комбайны, обеспечивающие анализ и другими методами – ЭСХА, оже-электронной спектроскопией, масс-спектрометрией вторичных ионов. Аппаратура эта обычно сложная и дорогая.

Рентгеноабсорбционный метод

Количественный анализ. Количественный анализ РАА проводят методом внешнего стандарта. При этом используют пропорциональность разности интенсивностей прошедшего излучения при длинах волн, ограничивающих край поглощения, содержанию соответствующего элемента в анализируемом образце. Относительное стандартное отклонение результатов РАА 0,01 – 0,05.

Аппаратурное оформление метода. Основными узлами рентгеноабсорбционного спектрометра являются источник рентгеновского излучения, монохроматор, устройство крепления и ввода образца, детектор.

Возможности метода и его применение. Метод РАА используется при серийных определениях тяжелых элементов в образцах постоянного состава, например, свинца в бензине, урана в растворах его солей или серы в различных топливных маслах.

Рентгенофлуоресцентный анализ (РФА) — один из современных спектроскопических методов исследования вещества с целью получения его элементного состава, то есть его элементного анализа. С помощью него могут анализироваться различные элементы от бериллия (Be) до урана (U). Метод РФА основан на сборе и последующем анализе спектра, полученного путём воздействия на исследуемый материал рентгеновским излучением. При облучении атом переходит в возбуждённое состояние, сопровождающееся переходом электронов на более высокие квантовые уровни. В возбуждённом состоянии атом пребывает крайне малое время, порядка одной микросекунды, после чего возвращается в спокойное положение (основное состояние). При этом электроны с внешних оболочек либо заполняют образовавшиеся вакантные места, а излишек энергии испускается в виде фотона, либо энергия передается другому электрону из внешних оболочек (оже-электрон). При этом каждый атом испускает фотоэлектрон с энергией строго определённого значения, например железо при облучении рентгеновскими лучами испускает фотоны Кα = 6,4 кэВ. Далее соответственно по энергии и количеству квантов судят о строении вещества.

 

1-источник света

2-первичное устройство выделения спектрального интервала (монохроматор, фильтр)

3-проба

4-вторичное устройство выделения спектрального интервала (монохроматор, фильтр)

5-фотоприемник

6-усилитель

7-индикатор выходного сигнала

Дифрактометрические методы.

Наиболее распространенный вид дифрактометрических исследований - идентификация фаз и количественный анализ фазового состава образца. На рисунке показана типичная дифрактограмма образца, состоящего из двух кристаллических фаз с разными размерами кристаллитов плюс аморфная фаза. Каждой фазе образца соответствуют свои пики дифракции рентгеновского излучения (показаны различными цветами). Остроконечные пики получены от кристаллических фаз образца, а нелинейный фон - от аморфной фазы.

Дифрактограмма содержит пики от всех фаз образца независимо от их числа.

- По положению пиков дифрактограммы определяют, какие кристаллические фазы присутствуют в образце (идентификация фаз). Идентификация достигается путем нахождения в базе данных таких же рентгеновских пиков, как на дифрактограмме исследуемого образца.

- По высоте (интенсивности) пиков выполняют количественный анализ кристаллических фаз, то есть определяют концентрацию каждой кристаллической фазы образца.

- По интенсивности нелинейного фона опреде- ляют суммарное содержание аморфных фаз.

Современные дифрактометры оснащены специализированным программным обеспечением для автоматического измерения, записи, интерпретации дифракционных пиков и подготовки аналитических отчётов. Электронные базы данных, интегрированные в программное обеспечение дифрактометров, содержат информацию о дифракционных пиках десятков тысяч кристаллических веществ, что позволяет уверенно идентифицировать фазы и выполнять расчет их концентраций в любых, даже достаточно сложных порошковых смесях и твёрдых образцах.

 

Определение структуры веществ
Определение структуры кристаллических веществ обеспечивается применением метода Ритвельда. Метод основан на нахождении степени соответствия между измеренной и теоретической дифракто- граммой, вычисленной по модели предполагаемой структуры. Вычисление (уточнение) параметров кристаллической решетки - межплоскостных расстояний и углов между атомными плоскостями исследуемого кристаллического вещества прово- дится с использованием статистических моделей.
Этот метод также может быть использован для идентификации отдельных фаз в смесях сложного состава.

Микроскопические методы.

Микрохим и ческий ан а лиз, метод аналитической химии для исследования малых образцов (от 10-2 до 10-3 г)различных веществ (образцы меньшей массы — до 10-6 г исследуются методом ультрамикрохимического анализа). Методы М. а. применяются в полупроводниковой промышленности, металлургии, минералогии, в судебно-химических, биохимических, клинических исследованиях, в органической химии для анализа синтезированных и природных соединений, в радиохимии и т. д.В качественном (см. также Качественный анализ) М. а. наиболее универсальным приёмом является выполнение реакций на фильтровальной бумаге — капельный анализ, который используется при исследовании как неорганических, так и органических веществ. Дополнительные возможности предоставляет т. н. метод кольцевой печи, позволяющий идентифицировать отдельные компоненты в узкой чёткой зоне на бумаге, разделять и идентифицировать их в смеси. В М. а. используются также методы распределительной и тонкослойной хроматографии. Другое направление качественного М. а. — микрокристаллоскопия. Помимо специальных методов анализа, применяют и несложные приёмы, такие, как получение в капле раствора на фарфоровой пластинке окрашенных продуктов реакций и получение в капиллярных пробирках осадков, характерных для того или иного элемента.Количественный (см. также Количественный анализ) М. а. органических и неорганических веществ может быть (аналогично макрохимическому анализу) гравиметрическим, титриметрическим, фотометрическим. В органических веществах методами количественного М. а. определяют содержание отдельных элементов (элементный анализ), содержание функциональных групп (функциональный анализ), а также молекулярную массу. Гравиметрические определения выполняют в основном при М. а. органических веществ, используя микровесы с чувствительностью 10-6 г. В органических М. а. наряду с гравиметрическим широко применяется метод газовой хроматографии. Титриметрические методы в М. а. занимают ведущее положение как наиболее простые и высокоточные; здесь используют микробюретки с отмериваемым объёмом до 10-3 мл и малой ёмкости сосуды для титрования; предпочтение отдаётся электрохимическими методам титрования, прежде всего кулонометрическому. Существенное практическое значение приобрели фотометрические микроопределения, в том числе для регистрации точки эквивалентности при титровании с окрашенным индикатором.

Главным направлением современного развития М. а. является преимущественное использование физико-химических методов. При исследовании сложных по составу малых объектов прибегают и к комбинации приёмов М. а. со специальными физическими методами микроанализа.

 

Рефрактометрический метод.

Рефрактометрия - это метод исследования веществ, основанный на определении показателя (коэффициента) преломления (рефракции) и некоторых его функций. Рефрактометрия (рефрактометрический метод) применяется для идентификации химических соединений, количественного и структурного анализа, определения физико-химических параметров веществ. Показатель преломления n представляет собой отношение скоростей света в граничащих средах. Для жидкостей и твердых тел n обычно определяют относительно воздуха, а для газов - относительно вакуума. Значения n зависят от длины волны λ света и температуры, которые указывают соответственно в подстрочном и надстрочном индексах. Например, показатель преломления при 20 °C для D-линии спектра натрия (λ = 589 нм) - Часто используют также линии спектра водорода С (λ = 656 нм) и F (λ = 486 нм). В случае газов необходимо также учитывать зависимость n от давления (указывать его или приводить данные к нормальному давлению).

В идеальных системах (образующихся без изменения объема и поляризуемости компонентов) зависимость показателя преломления от состава близка к линейной, если состав выражен в объемных долях (процентах)

n=n1V1+n2V2,

где n, n1,n2 - показатели преломления смеси и компонентов, V1 и V2 - объемные доли компонентов (V1 + V2 = 1).

Для рефрактометрии растворов в широких диапазонах концентраций пользуются таблицами или эмпирическими формулами, важнейшие из которых (для растворов сахарозы, этанола и др.) утверждаются международными соглашениями и лежат в основе построения шкал специализированных рефрактометров для анализа промышленной и сельскохозяйственной продукции.


Поделиться с друзьями:

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.013 с.